СУПЕРОКСИДДИСМУТАЗА В КЛЕТКАХ РАСТЕНИЙ

advertisement
2006
ÖÈÒÎËÎÃÈß
Ò î ì 48, ¹ 6
ÑÓÏÅÐÎÊÑÈÄÄÈÑÌÓÒÀÇÀ Â ÊËÅÒÊÀÕ ÐÀÑÒÅÍÈÉ
© Â. Â. Áàðàíåíêî
Â. Â. Áàðàíåíêî
Ñóïåðîêñèääèñìóòàçà â êëåòêàõ ðàñòåíèé
Èíñòèòóò áîòàíèêè èì. Í. Ã. Õîëîäíîãî Íàöèîíàëüíîé àêàäåìèè íàóê Óêðàèíû, Êèåâ;
ýëåêòðîííûé àäðåñ: cell@svitonline.com
Ñóïåðîêñèääèñìóòàçà (ÑÎÄ) ÿâëÿåòñÿ îäíèì èç êëþ÷åâûõ êîìïîíåíòîâ ñèñòåìû çàùèòû êëåòîê è
òêàíåé îò îêèñëèòåëüíîé äåñòðóêöèè.  îáçîðå îòìå÷åíà óíèêàëüíîñòü ôåðìåíòà ñðåäè äðóãèõ àíòèîêñèäàíòîâ. Îáîáùåíû äàííûå ëèòåðàòóðû î ëîêàëèçàöèè ÑÎÄ âíóòðè êëåòêè è â àïîïëàñòå, î ðåàêöèè íà
âîçäåéñòâèå ðàçëè÷íûõ íåáëàãîïðèÿòíûõ ôàêòîðîâ è ðîëè â óñòîé÷èâîñòè êëåòîê è òêàíåé ðàñòåíèé â
óñëîâèÿõ ñòðåññà. Ðàññìîòðåíû âîïðîñû, êàñàþùèåñÿ ðåãóëÿöèè àêòèâíîñòè ôåðìåíòà è ó÷àñòèÿ â ïðîöåññàõ ðåãóëÿöèè àêòèâíûõ ôîðì êèñëîðîäà, èîíîâ êàëüöèÿ, ôèòîãîðìîíîâ, ãëóòàòèîíà è îêñèäà àçîòà.
ëåòñÿ â ïðåäåëàõ 32—34 êÄà (McCord, Fridovich, 1969;
Beauchamp, Fridovich, 1973). Êàæäàÿ ìîëåêóëà ôåðìåíòà
ñîäåðæèò ïî 2 ã-àòîìà ìåäè è öèíêà â àêòèâíîì öåíòðå.
Êðèñòàëëè÷åñêàÿ ñòðóêòóðà ðàñòèòåëüíîé CuZnÑÎÄ ãîìîëîãè÷íà òàêîâîé èç êëåòîê æèâîòíûõ: êàæäàÿ ñóáúåäèíèöà ôåðìåíòà èìååò ñòðóêòóðó áî÷îíêà (áåòà-áàððåëÿ) (Kitagawa et al., 1991). Îòëè÷èòåëüíîé îñîáåííîñòüþ
ðàñòèòåëüíîé ÑÎÄ ÿâëÿåòñÿ ìíîæåñòâåííîñòü èçîçèìîâ
ðàçíûõ ôîðì ÑÎÄ, ÷òî íå óäàëîñü îáíàðóæèòü àâòîðó â
êëåòêàõ æèâîòíûõ. Òàê, â êëåòêàõ ëèñòüåâ êóêóðóçû îáíàðóæåíî 9 èçîçèìîâ ÑÎÄ: 4 CuZnÑÎÄ â öèòîïëàçìå,
1 CuZnÑÎÄ â õëîðîïëàñòàõ è 4 MnÑÎÄ â ìèòîõîíäðèÿõ
(Zhu, Scandalios, 1994). Êîëè÷åñòâî èçîçèìîâ êîëåáëåòñÿ
îò îäíîãî âèäà ðàñòåíèé ê äðóãîìó (Scandalios, 1997; Lee
et al., 2001). CuZnÑÎÄ îòëè÷àåòñÿ ìîëåêóëÿðíûìè ñâîéñòâàìè îò äâóõ äðóãèõ èçîôîðì — FeÑÎÄ è MnÑÎÄ
(ñì. òàáëèöó), òîãäà êàê äâå ïîñëåäíèå ïî ìíîãèì ñâîéñòâàì ãîìîëîãè÷íû òàêîâûì, âûäåëåííûì íå òîëüêî èç
ðàçëè÷íûõ ôîðì ðàñòåíèé, íî è èç äðóãèõ èñòî÷íèêîâ
(Yost, Fridovich, 1973; Parker et al., 1987). Âñå òðè èçîôîðìû îáúåäèíÿåò ôóíêöèÿ äèñìóòàöèè ñóïåðîêñèäíûõ
ðàäèêàëîâ.
 ïîñëåäóþùèõ ðàçäåëàõ áóäóò ïðèâåäåíû äàííûå
ëèòåðàòóðû î ñòðóêòóðå è ôóíêöèè ÑÎÄ, ëîêàëèçàöèè,
ðåàêöèè íà âîçäåéñòâèå ñòðåññîâûõ ôàêòîðîâ, à òàêæå
ðåãóëÿöèè àêòèâíîñòè â êëåòêàõ ðàñòåíèé.
Àíòèîêñèäàíòíûé ôåðìåíò ñóïåðîêñèääèñìóòàçà
(ÑÎÄ; ÊÔ 1.15.1.1) áûë îáíàðóæåí â êîíöå 1930-õ ãîäîâ
Ìàííîì è Êåèëèíîì (Mann, Keilin, 1938) êàê ìåäüñîäåðæàùèé áåëîê è íàçâàí ãåìîêóïðåèíîì, à çàòåì ýðèòðîêóïðåèíîì. Ïðåäïîëàãàëè, ÷òî áèîëîãè÷åñêàÿ ðîëü ýòîãî
áåëêà çàêëþ÷àëàñü â çàïàñàíèè èîíîâ ìåäè. È òîëüêî â
1969 ã. Ìàê-Êîðäîì è Ôðèäîâè÷åì (McCord, Fridovich,
1969) áûëî îáíàðóæåíî, ÷òî ãåìîêóïðåèí ÿâëÿåòñÿ ôåðìåíòîì, êîòîðûé êàòàëèçèðóåò ðåàêöèþ äèñìóòàöèè ñóïåðîêñèäíûõ ðàäèêàëîâ ( O•2 – ). Íîâûé ôåðìåíò ïðèîáðåë
íàçâàíèå ñóïåðîêñèääèñìóòàçû.  1970-å ãîäû èç Escherichia coli áûëè âûäåëåíû ôåðìåíòû ñ àíàëîãè÷íîé ôóíêöèåé, íî âìåñòî èîíîâ ìåäè è öèíêà â àêòèâíîì öåíòðå
îíè ñîäåðæàëè èîíû æåëåçà (Yost, Fridovich, 1973) èëè
ìàðãàíöà (Keele et al., 1970). Òàêèì îáðàçîì, êðîìå CuZn
ÑÎÄ îáíàðóæèëîñü ñóùåñòâîâàíèå åùå äâóõ èçîôîðì
ÑÎÄ — MnÑÎÄ è FeÑÎÄ. Äàëüíåéøèå èññëåäîâàíèÿ ïîêàçàëè ïðèñóòñòâèå ÑÎÄ â êëåòêàõ æèâûõ îðãàíèçìîâ
ðàçíîãî óðîâíÿ îðãàíèçàöèè: ðàñòåíèé (Beauchamp, Fridovich, 1973), ÷åëîâåêà (Nyman, 1960), æèâîòíûõ (McCord,
Fridovich, 1969), ìèêðîîðãàíèçìîâ — ãðèáîâ (Rapp et al.,
1973), áàêòåðèé (Keele et al., 1970) è äð.
Öåëü íàñòîÿùåãî îáçîðà — îáîáùèòü äàííûå ëèòåðàòóðû, êàñàþùèåñÿ ðàçëè÷íûõ ñòîðîí èçó÷åíèÿ ÑÎÄ â
êëåòêàõ ðàñòåíèé. Õàðàêòåðíîé îñîáåííîñòüþ êëåòîê
ðàñòåíèé, îòëè÷àþùèõ èõ îò êëåòîê äðóãèõ îðãàíèçìîâ,
ÿâëÿåòñÿ íàëè÷èå âñåõ òðåõ èçîôîðì.  êëåòêàõ æèâîòíûõ, ãäå ôåðìåíò áûë âïåðâûå îáíàðóæåí, ïðèñóòñòâóþò òîëüêî CuZnÑÎÄ è MnÑÎÄ (Wanders, Denis, 1992), à
â êëåòêàõ ïðîêàðèîò — FeÑÎÄ è MnÑÎÄ (Keele et al.,
1970; Yost, Fridovich, 1973). Äàííûå ëèòåðàòóðû óêàçûâàþò íà áîëüøîå ñõîäñòâî ìîëåêóëÿðíûõ ñâîéñòâ ðàñòèòåëüíîé CuZnÑÎÄ ñ òàêîâîé, îáíàðóæåííîé â êëåòêàõ
æèâîòíûõ è ÷åëîâåêà (Nyman, 1960; McCord, Fridovich,
1969; Beauchamp, Fridovich, 1973). Ìîëåêóëà CuZnÑÎÄ
ðàñòèòåëüíîãî è æèâîòíîãî ïðîèñõîæäåíèÿ ÿâëÿåòñÿ äèìåðîì, ñîñòîÿùèì èç äâóõ ðàâíîãî ðàçìåðà ñóáúåäèíèö,
ñâÿçàííûõ íåêîâàëåíòíî; ìîë. ìàññà èçîôîðìû êîëåá-
Ñòðóêòóðà è ôóíêöèè ÑÎÄ
ÑÎÄ êàòàëèçèðóåò äèñïðîïîðöèîíèðîâàíèå ñóïåðîêñèäíûõ àíèîí-ðàäèêàëîâ äî ìîëåêóëÿðíîãî êèñëîðîäà
è ïåðîêñèäà âîäîðîäà (McCord, Fridovich, 1969):
•–
ÑÎÄ
2O2 + 2H+ ⎯⎯⎯→ H2 O2 + O2 .
Ìåõàíèçì äåéñòâèÿ ÑÎÄ çàêëþ÷àåòñÿ â ïîñëåäîâàòåëüíîì âîññòàíîâëåíèè è îêèñëåíèè ñóïåðîêñèäíûìè
465
Â. Â. Áàðàíåíêî
466
Õàðàêòåðèñòèêà è ëîêàëèçàöèÿ èçîôîðì ÑÎÄ â êëåòêàõ ðàñòåíèé
ÑÎÄ
Õàðàêòåðèñòèêà ÑÎÄ
Ëîêàëèçàöèÿ â êëåòêàõ ðàñòåíèé
CuZnÑÎÄ
Ãîìîäèìåð (33 êÄà) (Christov, Bakardjieva,
1999); â àêòèâíîì öåíòðå ñîäåðæèòñÿ ïî
2 ã-àòîìà ìåäè (Cu2+) è öèíêà (Zn2+)
(Bannister et al., 1991)
MnÑÎÄ
Ãîìîäèìåð (46 êÄà) èëè ãîìîòåòðàìåð
(92 êÄà) (Palma et al., 1998); â àêòèâíîì
öåíòðå ñîäåðæèòñÿ 2 èëè 4 ã-àòîìà
ìàðãàíöà (Mn3+)
FeÑÎÄ
Ãîìîäèìåð (36—46 êÄà) — â õëîðîïëàñòàõ; Õëîðîïëàñòû (Gomez et al., 2003/4); öèòîïëàçìà êëóáåíüêîâ íåêîòîðûõ áîáîâûõ
ñîäåðæàíèå æåëåçà (Fe3+) â àêòèâíîì öåíòðå âàðüèðóåò îò 1 äî 2 ã-àòîìîâ (Salin,
(Moran et al., 2003)
1987) è 54 êÄà — â öèòîïëàçìå êëóáåíüêîâ áîáîâûõ (Moran et al., 2003); â àêòèâíîì öåíòðå ñîäåðæèòñÿ 2 ã-àòîìà æåëåçà
àíèîí-ðàäèêàëàìè ìåòàëëà (Me) àêòèâíîãî öåíòðà ôåðìåíòà (Asada, 1996):
ÑÎÄ-Men+ + O•2 – → ÑÎÄ-Me(n–1)+ + O2,
ÑÎÄ-Me(n–1)+ + O•2 – + 2H+ → ÑÎÄ-Men+ + H2O2.
•–
Ñêîðîñòü âçàèìîäåéñòâèÿ ÑÎÄ ñ O2 â çíà÷èòåëüíîé
ñòåïåíè îïðåäåëÿåòñÿ
âÿçêîñòüþ ìåìáðàí (Asada, 1996).
•–
Äèñìóòàöèÿ O2 ìîæåò ïðîèñõîäèòü ñïîíòàííî áåç ó÷àñòèÿ ÑÎÄ. Ñêîðîñòü ñïîíòàííîé äèñìóòàöèè 2$105 Ì–1/ñ–1
ïðè pH 7.0, òîãäà êàê â ïðèñóòñòâèè ÑÎÄ — 2$109 Ì–1/ñ–1,
ò. å. ïðèáëèçèòåëüíî â 104 ðàç áûñòðåå (Ogawa et al.,
1996).
Èçó÷åíèþ ÑÎÄ óäåëÿåòñÿ ìíîãî âíèìàíèÿ, ïîñêîëüêó åé îòâîäèòñÿ âàæíàÿ ðîëü â çàùèòå êëåòîê è òêàíåé îò
îêèñëèòåëüíîé äåñòðóêöèè. Ñóïåðîêñèäíûå ðàäèêàëû —
ïåðâè÷íûå ïðîäóêòû îäíîýëåêòðîííîãî âîññòàíîâëåíèÿ
ìîëåêóëÿðíîãî êèñëîðîäà — ÿâëÿþòñÿ èñòî÷íèêîì îáðàçîâàíèÿ äðóãèõ, â òîì ÷èñëå è áîëåå ðåàêöèîííîñïîñîáíûõ, ÀÔÊ (Ìåðçëÿê, 1989). Ïåðîêñèä âîäîðîäà, ãèäðîêñèëüíûå è ãèäðîïåðåêèñíûå ðàäèêàëû, ñèíãëåòíûé
êèñëîðîä è ïåðîêñèíèòðèò ÿâëÿþòñÿ ïðîäóêòàìè ïðåâðà-
Ñõåìàòè÷åñêîå èçîáðàæåíèå ðàñïîëîæåíèÿ CuZnÑÎÄ â õëîðîïëàñòàõ øïèíàòà (Ogawa et al., 1995).
Èñïîëüçîâàíèå ìåòêè èììóííîãî çîëîòà ïîêàçàëî, ÷òî îêîëî 70 % CuZnÑÎÄ ïðèêðåïëåíî ê ñòðîìàëüíîé ïîâåðõíîñòè òèëàêîèäîâ õëîðîïëàñòîâ
øïèíàòà.
Schematic representation of CuZnSOD localization in spinach
chloroplasts (Ogawa et al., 1995).
Immunogold labeling indicates that over 70 % of CuZnSOD attached to stroma-faced thylakoid membranes.
Õëîðîïëàñòû (Ogawa et al., 1995); ìèòîõîíäðèè (Kuzniak, Sklodowska, 2004); ïåðîêñèñîìû (Corpas et al., 1998); öèòîïëàçìà
(Hernandez et al., 1999); àïîïëàñò (Ogawa
et al., 1997)
Ìèòîõîíäðèè (Kuzniak, Sklodowska, 2004);
ïåðîêñèñîìû (Palma et al., 1998)
•–
ùåíèÿ ðàäèêàëîâ O2 (Ìåðçëÿê, 1989; Pryor, Squadrito,
1995). Ïîñêîëüêó ãèäðîêñèëüíûå ðàäèêàëû, ñèíãëåòíûé
êèñëîðîä è ïåðîêñèíèòðèò àêòèâíî îêèñëÿþò áåëêîâûå
ìîëåêóëû, ñïåöèôè÷åñêèõ ôåðìåíòîâ-äåçàêòèâàòîðîâ
äàííûõ ÀÔÊ íå ñóùåñòâóåò, óðîâåíü èõ â êëåòêå îïîñðåäîâàííî ðåãóëèðóåòñÿ ÑÎÄ ïóòåì óáîðêè ñóïåðîêñèäíûõ ðàäèêàëîâ — èñòî÷íèêà èõ îáðàçîâàíèÿ. Ïî ýòîé
ïðè÷èíå ÑÎÄ ÿâëÿåòñÿ ïåðâè÷íîé ëèíèåé çàùèòû îò
îêèñëèòåëüíûõ ïîâðåæäåíèé, îáðûâàÿ îêèñëåíèå êëåòî÷íûõ ìàêðîìîëåêóë åùå íà ñòàäèè èíèöèèðîâàíèÿ.
•–
Êðîìå ó÷àñòèÿ â îáðàçîâàíèè äðóãèõ ÀÔÊ O2 ìîãóò íåïîñðåäñòâåííî âûçûâàòü îêèñëèòåëüíûå ìîäèôèêàöèè
îïðåäåëåííûõ âíóòðèêëåòî÷íûõ ìàêðîìîëåêóë. Ñðåäè
ìèøåíåé, ñïîñîáíûõ ê ïðÿìîìó îêèñëåíèþ ñóïåðîêñèäíûìè àíèîí-ðàäèêàëàìè, — áåëêîâûå ìîëåêóëû, ñîäåðæàùèå [FeS]-êëàñòåðû (Palatnik et al., 1999). Ñëåäñòâèåì
ýòîãî ÿâëÿþòñÿ èíàêòèâàöèÿ áåëêîâûõ ìîëåêóë è âûñâîáîæäåíèå Fe3+, êîòîðûé â ñâîþ î÷åðåäü ìîæåò âîññòàíàâëèâàòüñÿ êëåòî÷íûìè
ðåäóêòàíòàìè, â òîì ÷èñëå è
•–
ðàäèêàëàìè O2 , äî Fe2+ è çàòåì ïðèíèìàòü ó÷àñòèå â ðåàêöèè Ôåíòîíà ñ îáðàçîâàíèåì ãèäðîêñèëüíûõ ðàäèêàëîâ. Òàêèì îáðàçîì, ñóïåðîêñèäíûå àíèîí-ðàäèêàëû ìîãóò âûçûâàòü ïðÿìûå ïîâðåæäàþùèå ýôôåêòû, à òàêæå
áûòü èñòî÷íèêîì îáðàçîâàíèÿ äðóãèõ, â òîì ÷èñëå è áîëåå òîêñè÷íûõ, ôîðì êèñëîðîäà. Ïîýòîìó êëåòêà íóæäàåòñÿ â ñòðîãîì êîíòðîëå íàä ïðîäóêöèåé è ñâîåâðåìåííûì óäàëåíèåì äàííûõ ðàäèêàëîâ.
Èçîôîðìû ÑÎÄ îòëè÷àþòñÿ ðàçíîé ÷óâñòâèòåëüíîñòüþ ê èíãèáèòîðàì CN– è H2O2. Òàê, CuZnÑÎÄ èíãèáèðóåòñÿ CN– è H2O2, FeÑÎÄ — òîëüêî H2O2, à MnÑÎÄ íåâîñïðèèì÷èâà ê îáîèì èíãèáèòîðàì (Bowler et al., 1992).
Âñå îõàðàêòåðèçîâàííûå CuZnÑÎÄ ÿâëÿþòñÿ ãëàâíûì îáðàçîì ãîìîäèìåðàìè, ñîñòîÿùèìè èç äâóõ ñóáúåäèíèö ïî 16.5 êÄà êàæäàÿ (Bueno, Del Rio, 1992; Christov,
Bakardjieva, 1999) (ñì. òàáëèöó). Ìîëåêóëà FeÑÎÄ — òàêæå ãîìîäèìåð, èìåþùèé ìîë. ìàññó 36—46 êÄà â õëîðîïëàñòàõ (Salin, 1987) è 54 êÄà — â öèòîçîëå êëóáåíüêîâ
áîáîâûõ (Moran et al., 2003). MnÑÎÄ èìååò ìîë. ìàññó 46
èëè 92 êÄà è ñîñòîèò ñîîòâåòñòâåííî èç 2 èëè 4 îäèíàêîâîãî ðàçìåðà ñóáúåäèíèö (Palma et al., 1998).
Èçîôîðìû ÑÎÄ ðàçëè÷àþòñÿ íå òîëüêî ìîëåêóëÿðíîé ìàññîé è ÷óâñòâèòåëüíîñòüþ ê èíãèáèòîðàì, íî òàêæå ëîêàëèçàöèåé â êëåòêàõ ðàñòåíèé.
Ñóïåðîêñèääèñìóòàçà â êëåòêàõ ðàñòåíèé
Ëîêàëèçàöèÿ ÑÎÄ
Ôåðìåíò ïðèñóòñòâóåò â êëåòêàõ ðàñòåíèé òàì, ãäå
ïðîèñõîäÿò îêèñëèòåëüíî-âîññòàíîâèòåëüíûå ïðîöåññû,
ò. å. ïðàêòè÷åñêè âî âñåõ åå êîìïàðòìåíòàõ, à òàêæå â àïîïëàñòå. Ñðàâíåíèå äàííûõ î ëîêàëèçàöèè ðàçíûõ ôîðì
ÑÎÄ ïîêàçûâàåò, ÷òî íàèáîëåå èçîáèëüíîé â êëåòêàõ
ðàñòåíèé ÿâëÿåòñÿ CuZnÑÎÄ. Îíà îáíàðóæåíà âî âñåõ
âíóòðèêëåòî÷íûõ êîìïàðòìåíòàõ — â öèòîçîëå (Hernandez et al., 1999; Hurst et al., 2002), õëîðîïëàñòàõ (Ogawa et
al., 1995; Hernandez et al., 1999), ìèòîõîíäðèÿõ (Kuzniak,
Slkodowska, 2004), ïåðîêñèñîìàõ (Corpas et al., 1998), à
òàêæå â àïîïëàñòå (Ogawa et al., 1997) (ñì. òàáëèöó). ×òî
êàñàåòñÿ MnÑÎÄ è FeÑÎÄ, îíè îáíàðóæåíû ëèøü â
îïðåäåëåííûõ îðãàíåëëàõ.  ÷àñòíîñòè, MnÑÎÄ ðàñïîëîæåíà â ìèòîõîíäðèÿõ (Kuzniak, Slkodowska, 2004) è
ïåðîêñèñîìàõ (Palma et al., 1998), à FeÑÎÄ — â õëîðîïëàñòàõ (Navari-Izzo et al., 1998; Gomez et al., 2003/4) è
öèòîïëàçìå êëóáåíüêîâ íåêîòîðûõ áîáîâûõ (Moran et al.,
2003). Ðàññìîòðèì áîëåå ïîäðîáíî ëîêàëèçàöèþ èçîôîðì ÑÎÄ â êëåòêàõ ðàñòåíèé.
Öèòîçîëüíàÿ ôîðìà CuZnÑÎÄ îáíàðóæåíà âîçëå èëè
íà òîíîïëàñòå, à òàêæå â ñàìîì ÿäðå, ÷òî óêàçûâàåò íà
îáðàçîâàíèå ñóïåðîêñèäíûõ ðàäèêàëîâ âíóòðè ÿäðà
(Ogawa et al., 1996). Ïðåäïîëàãàþò, ÷òî â ÿäðî ôåðìåíòà
ïîïàäàåò ÷åðåç ÿäåðíûå ïîðû.  ÿäðå ÑÎÄ (äî 80 %) ñâÿçàíà ñ ÄÍÊ-ôèëàìåíòàìè, çàùèùàÿ èõ îò îêèñëèòåëüíûõ
ïîâðåæäåíèé (Ogawa et al., 1996). Äàííàÿ èçîôîðìà îáíàðóæåíà òàêæå âîçëå èëè íà öèòîïëàçìàòè÷åñêîé ìåìáðàíå (Ogawa et al., 1996).  õëîðîïëàñòàõ CuZnÑÎÄ ëîêàëèçîâàíà â ìåìáðàíàõ òèëàêîèäîâ è ñòðîìå (Ogawa et
al., 1995; Gomez et al., 2003/4).  ÷àñòíîñòè, îêîëî 70 %
CuZnÑÎÄ ïðèêðåïëåíî ê ñòðîìàëüíîé ïîâåðõíîñòè ìåìáðàí òèëàêîèäîâ, ãäå ðàñïîëîæåí êîìïëåêñ ôîòîñèñòåìû I (Ogawa et al., 1995). Îòìå÷åíî, ÷òî ëîêàëüíàÿ êîíöåíòðàöèÿ ôåðìåíòà â ìåìáðàíàõ òèëàêîèäîâ ñîñòàâëÿåò
îêîëî 1 ìÌ, òîãäà êàê â ñòðîìå — îêîëî 20 ìêÌ (Ogawa
et al., 1995). Òàêèì îáðàçîì, áîëüøåå êîëè÷åñòâî ÑÎÄ
ïðèêðåïëåíî ê òèëàêîèäíûì ìåìáðàíàì, è ýòî ñâèäåòåëüñòâóåò î òîì, ÷òî ïðîäóêöèÿ â íèõ ñóïåðîêñèäíûõ
ðàäèêàëîâ âûøå ïî ñðàâíåíèþ ñî ñòðîìîé. Ôåðìåíò îáíàðóæåí òàêæå âî âíóòðèòèëàêîèäíîì ïðîñòðàíñòâå õëîðîïëàñòîâ (îêîëî 4 % õëîðîïëàñòíîé CuZnÑÎÄ) (Hayakawa et al., 1984). Ïîñêîëüêó îñíîâíîå êîëè÷åñòâî CuZnÑÎÄ â êëåòêàõ ëèñòüåâ ðàñòåíèé, êàê ñâèäåòåëüñòâóþò
äàííûå ëèòåðàòóðû, ëîêàëèçîâàíî â õëîðîïëàñòàõ (Asada, 1996), î÷åâèäíî, ÷òî ïîñëåäíèå ÿâëÿþòñÿ âàæíûì èñòî÷íèêîì ñóïåðîêñèäíûõ ðàäèêàëîâ â êëåòêå. Êðîìå
õëîðîïëàñòîâ CuZnÑÎÄ îáíàðóæåíà â ìàòðèêñå ïåðîêñèñîì (Sandalio, Del Rio, 1987; Corpas et al., 1998), ãäå
îíà ÿâëÿåòñÿ òàêæå ïðåîáëàäàþùåé èçîôîðìîé ÑÎÄ. Íà
äîëþ ïåðîêñèñîìíîé CuZnÑÎÄ ïðèõîäèòñÿ îêîëî 18 %
îáùåé àêòèâíîñòè ÑÎÄ â êëåòêàõ ðàñòåíèé (Sandalio, Del
Rio, 1987).  àïîïëàñòå äàííàÿ èçîôîðìà ïðèíèìàåò ó÷àñòèå â ëèãíèôèêàöèè êëåòî÷íûõ ñòåíîê è çàùèòå êëåòîê
è òêàíåé ðàñòåíèé îò ïàòîãåíîâ (Ogawa et al., 1997; Shinkel et al., 2001).
MnÑÎÄ îáíàðóæåíà â ìàòðèêñå ìèòîõîíäðèé è ïåðîêñèñîì (Del Rio et al., 2003; Moller, 2001). Îòìå÷åíà
çíà÷èòåëüíàÿ ãîìîëîãèÿ àìèíîêèñëîòíûõ ïîñëåäîâàòåëüíîñòåé ôåðìåíòà â ìèòîõîíäðèÿõ ñ òàêîâîé â ïåðîêñèñîìàõ (Del Rio et al., 2003).
FeÑÎÄ â êëåòêàõ ðàñòåíèé ðàñïîëîæåíà ãëàâíûì îáðàçîì â õëîðîïëàñòàõ — êàê â ñòðîìå, òàê è íà ìåìáðàíàõ òèëàêîèäîâ (Navarri-Izzo et al., 1998; Gomez et al.,
467
2003/4). Êðîìå õëîðîïëàñòîâ îáíàðóæåíà ëîêàëèçàöèÿ
ôåðìåíòà â íåôîòîñèíòåçèðóþùèõ îðãàíåëëàõ è òêàíÿõ:
â ïåðîêñèñîìàõ ëèñòüåâ Lycopersicon esculentum (Mittova
et al., 2003), ïåðîêñèñîìàõ ëåïåñòêîâ ãâîçäèêè (Droillard,
Paulin, 1990), à òàêæå â öèòîçîëå êëóáåíüêîâ íåêîòîðûõ
áîáîâûõ — êëåâåðà, ñîè è ôàñîëè (Moran et al., 2003).
Îäíàêî íå ó âñåõ áîáîâûõ îáíàðóæåí ôåðìåíò â öèòîçîëå êëóáåíüêîâ: ó ëþöåðíû è ãîðîõà îí ëîêàëèçîâàí èñêëþ÷èòåëüíî â õëîðîïëàñòàõ (Moran et al., 2003). Òàêèì
îáðàçîì, ñóùåñòâóåò íåñêîëüêî òèïîâ FeÑÎÄ â êëåòêàõ
ðàñòåíèé.
Ïîòðåáíîñòü êëåòîê ðàñòåíèé â èçîôîðìàõ ÑÎÄ,
èìåþùèõ ðàçíûå õàðàêòåðèñòèêè, î÷åâèäíî, îáúÿñíÿåòñÿ íåîáõîäèìîñòüþ áîëåå ýôôåêòèâíîé çàùèòû îò îêèñëèòåëüíîé äåñòðóêöèè.
Àêòèâíîñòü ÑÎÄ â óñëîâèÿõ äåéñòâèÿ
íåáëàãîïðèÿòíûõ ôàêòîðîâ
 îáû÷íûõ óñëîâèÿõ ñóùåñòâîâàíèÿ •ïîääåðæèâàåò–
ñÿ áàëàíñ ìåæäó ïðîäóêöèåé ðàäèêàëîâ O2 è èõ ñâîåâðåìåííûì óäàëåíèåì. Ïðè äåéñòâèè íåáëàãîïðèÿòíûõ ôàêòîðîâ óâåëè÷èâàåòñÿ îáðàçîâàíèå àêòèâíûõ ôîðì êèñëîðîäà, â òîì ÷èñëå è ðàäèêàëîâ ñóïåðîêñèäà (Edreva et al.,
1998; Kami*nska-Ro¿ek, Pukacki, 2004). Àêòèâíîñòü ÑÎÄ
ïðè ýòîì èçìåíÿåòñÿ ðàçíîíàïðàâëåííî; â îäíèõ ñëó÷àÿõ
îòìå÷åíî åå óâåëè÷åíèå, â äðóãèõ — ñíèæåíèå, ÷òî çàâèñèò îò íàïðÿæåííîñòè äåéñòâèÿ ñòðåññîâîãî ôàêòîðà
(èíòåíñèâíîñòè è äëèòåëüíîñòè âîçäåéñòâèÿ), à òàêæå îò
âîñïðèèì÷èâîñòè îðãàíèçìà, ñòàäèè ðàçâèòèÿ ðàñòåíèé
è äð. Óâåëè÷åíèå àêòèâíîñòè ôåðìåíòà îòìå÷åíî â óñëîâèÿõ âîäíîãî äåôèöèòà (Iturbe-Ormaetxe et al., 1998; Kami*nska-Ro¿ek, Pukacki, 2004) è ïåðåóâëàæíåíèÿ ïî÷âû
(Êàëàøíèêîâ è äð., 1994), ïðè òåïëîâîì øîêå (Êóðãàíîâà è äð., 1997; Kang, Saltveit, 2001) è îõëàæäåíèè (Kuk et
al., 2003), ñîëåâîì ñòðåññå (Lee et al., 2001; Hurst et al.,
2002), ïðè ÓÔ-îáëó÷åíèè (Schmitz-Eiberger, Noga, 2001),
èíòåíñèâíîì îñâåùåíèè (Logan et al., 1998), îáðàáîòêå
ðàñòåíèé îçîíîì (Alonso et al., 2001), òÿæåëûìè ìåòàëëàìè (Garcia et al., 1999; Skorzynska-Polit et al., 2003/4), àáñöèçîâîé êèñëîòîé (Jiang, Zhang, 2001), ïðè èíîêóëÿöèè
ïàòîãåíàìè (Babithaa et al., 2002; Kuzniak et al., 2004). Òàêèì îáðàçîì, ðàçíîîáðàçíûå íåáëàãîïðèÿòíûå âîçäåéñòâèÿ, äàæå ïðîòèâîïîëîæíûå ïî ñâîåé ïðèðîäå (çàñóõà—ïåðåóâëàæíåíèå), ìîãóò ïðèâîäèòü ê àêòèâàöèè
ÑÎÄ. Óâåëè÷åíèå àêòèâíîñòè ôåðìåíòà ïðè ðàçëè÷íûõ
ñòðåññîâûõ âîçäåéñòâèÿõ ìîæåò áûòü îáóñëîâëåíî àêòèâàöèåé åãî ëàòåíòíûõ ôîðì è(èëè) ñèíòåçîì íîâûõ
ìîëåêóë ôåðìåíòà. Òàê, îäíîâðåìåííîå óâåëè÷åíèå àêòèâíîñòè ÑÎÄ è êîëè÷åñòâà ñîîòâåòñòâóþùèõ áåëêîâ
îòìå÷åíî ïðè ñîëåâîì ñòðåññå â õëîðîïëàñòàõ ãîðîõà
(Gomez et al., 2003/4) è ëèñòüÿõ òîëåðàíòíîãî ñîðòà Lycopersicon pennellii (Mittova et al., 2003), õëîðîïëàñòàõ
ïøåíèöû ïðè îáðàáîòêå ðàñòåíèé ðàñòâîðîì ìåäè (Navari-Izzo et al., 1998), ÷òî ñâèäåòåëüñòâóåò îá óâåëè÷åíèè
ñèíòåçà ôåðìåíòà â óñëîâèÿõ äåéñòâèÿ ñòðåññîâîãî ôàêòîðà.
Àêòèâàöèÿ ÑÎÄ ïðè íåáëàãîïðèÿòíûõ âîçäåéñòâèÿõ
ÿâëÿåòñÿ îòâåòîì íà óâåëè÷åíèå ïðîäóêöèè ðàäèêàëîâ
ñóïåðîêñèäà â ýòèõ óñëîâèÿõ, ÷òî îáåñïå÷èâàåò çàùèòó
êëåòîê è òêàíåé ðàñòåíèé îò îêèñëèòåëüíûõ ïîâðåæäåíèé. Èçó÷åíèå ïîâåäåíèÿ ôåðìåíòà â ðàñòåíèÿõ, ðàçëè÷àþùèõñÿ ïî óñòîé÷èâîñòè ê òîìó èëè èíîìó âîçäåéñòâèþ, ïîêàçûâàåò, ÷òî óñòîé÷èâûå ðàñòåíèÿ ïî ñðàâíåíèþ
468
Â. Â. Áàðàíåíêî
ñ âîñïðèèì÷èâûìè õàðàêòåðèçóþòñÿ áîëåå âûñîêèìè àêòèâíîñòÿìè ÑÎÄ è ìåíåå âûðàæåííûìè îêèñëèòåëüíûìè ïîâðåæäåíèÿìè (Babithaa et al., 2002; Mittova et al.,
2003; Wu et al., 2003). Òàê, â óñëîâèÿõ ñîëåâîãî ñòðåññà
îòìå÷åíî óâåëè÷åíèå àêòèâíîñòè ÑÎÄ â ìèòîõîíäðèÿõ è
ïåðîêñèñîìàõ ëèñòüåâ òîëåðàíòíîãî ñîðòà òîìàòîâ Lycopersicon pennellii, òîãäà êàê ó ðàñòåíèé îáû÷íîãî ñîðòà
(Lycopersicon esculentum) ïðîèñõîäèëî ñíèæåíèå àêòèâíîñòè ôåðìåíòà â ìèòîõîíäðèÿõ, à â ïåðîêñèñîìàõ èçìåíåíèÿ îòñóòñòâîâàëè (Mittova et al., 2003). Ïðè ýòîì ïîêàçàòåëè îêèñëèòåëüíîãî ñòðåññà (íàêîïëåíèå ïåðîêñèäà
âîäîðîäà è èíòåíñèâíîñòü ïåðîêñèäíîãî îêèñëåíèÿ ëèïèäîâ) áûëè çíà÷èòåëüíåå âûðàæåíû ó îáû÷íûõ ðàñòåíèé, òîãäà êàê ó òîëåðàíòíîãî ñîðòà èìåëî ìåñòî äàæå
ñíèæåíèå óðîâíÿ îêèñëåíèÿ â ïåðîêñèñîìàõ (Mittova et
al., 2003). Òàêèì îáðàçîì, óñòîé÷èâûå ðàñòåíèÿ èìåþò
áîëåå ýôôåêòèâíóþ ñèñòåìó çàùèòû, ÷òî îáåñïå÷èâàåò
âîçìîæíîñòü ôóíêöèîíèðîâàíèÿ â óñëîâèÿõ ñòðåññà. Òðàíñãåííûå ðàñòåíèÿ, èìåþùèå ïîâûøåííûå óðîâíè àíòèîêñèäàíòîâ, â òîì ÷èñëå è ÑÎÄ, òàêæå ÿâëÿþòñÿ áîëåå
óñòîé÷èâûìè ê âîçäåéñòâèþ íåáëàãîïðèÿòíûõ ôàêòîðîâ
ïî ñðàâíåíèþ ñ îáû÷íûìè ðàñòåíèÿìè (Van Camp et al.,
1996a; Van Breusegem et al., 1999; Basu et al., 2001; Gao et
al., 2003). Òàê, â òðàíñãåííûõ ðàñòåíèÿõ Brassica napus
êîëè÷åñòâî òðàíñêðèïòîâ è îáùàÿ àêòèâíîñòü ÑÎÄ áûëè
âûøå ïî ñðàâíåíèþ ñ òàêîâûìè â êëåòêàõ îáû÷íûõ ðàñòåíèé (Basu et al., 2001). Ïðè îáðàáîòêå àëþìèíèåì ó
îáîèõ òèïîâ ðàñòåíèé îòìå÷åíî èíãèáèðîâàíèå ðîñòà
êîðíåé è óâåëè÷åíèå óðîâíÿ ïåðîêñèäíîãî îêèñëåíèÿ
ëèïèäîâ, îäíàêî ýòè ïîêàçàòåëè áûëè ìåíåå âûðàæåíû ó
òðàíñãåííûõ ðàñòåíèé (Basu et al., 2001).  êëåòêàõ ðàñòåíèé-ìóòàíòîâ, äåôèöèòíûõ ïî ãåíó ÑÎÄ, ïðè èíîêóëÿöèè ïàòîãåíàìè òàêæå îòìå÷åíû çíà÷èòåëüíûå ïîâðåæäåíèÿ ïî ñðàâíåíèþ ñ îáû÷íûìè ðàñòåíèÿìè (Rolke et al.,
2004). Òàêèì îáðàçîì, ëèòåðàòóðíûå äàííûå ñâèäåòåëüñòâóþò î ñóùåñòâîâàíèè òåñíîé ñâÿçè ìåæäó óñòîé÷èâîñòüþ ðàñòåíèé ê òîìó èëè èíîìó âîçäåéñòâèþ è ïîâûøåííûìè óðîâíÿìè èëè àêòèâíîñòÿìè êîìïîíåíòîâ ñèñòåìû
çàùèòû, â òîì ÷èñëå è ÑÎÄ, ò. å. ñ ïîâûøåííîé ñïîñîáíîñòüþ êëåòîê è òêàíåé óáèðàòü àêòèâíûå ôîðìû êèñëîðîäà.
Îäíàêî ïðè äîñòèæåíèè îïðåäåëåííîãî óðîâíÿ îêèñëèòåëüíîãî ñòðåññà ïðîèñõîäèò ñíèæåíèå àêòèâíîñòè
ÑÎÄ. Íàïðèìåð, â ëèñòüÿõ ïøåíèöû â óñëîâèÿõ çàñóõè
âíà÷àëå îòìå÷åíà àêòèâàöèÿ ôåðìåíòà, çàòåì ñ óâåëè÷åíèåì äëèòåëüíîñòè âîçäåéñòâèÿ ïðîèñõîäèëî ñíèæåíèå
àêòèâíîñòè (Zhang, Kirkham, 1994). Òàêàÿ æå òåíäåíöèÿ
îòìå÷åíà ïðè óâåëè÷åíèè íå òîëüêî äëèòåëüíîñòè âîçäåéñòâèÿ (Jiang, Huang, 2001), íî è åãî èíòåíñèâíîñòè: ïðè
âîäíîì äåôèöèòå (Iturbe-Ormaetxe et al., 1998; Fu, Huang,
2001), ïåðåóâëàæíåíèè (Êàëàøíèêîâ è äð., 1999), ñîëåâîì
ñòðåññå (Santos et al., 2001), îáðàáîòêå àáñöèçîâîé êèñëîòîé (Jiang, Zhang, 2001) è òÿæåëûìè ìåòàëëàìè (Garcia et
al., 1999), ôóìèãàöèè HF (Ãðèøêî, Ñûùèêîâ, 1999) è äð.
Ñíèæåíèå àêòèâíîñòè ôåðìåíòà ìîæåò ïðîèñõîäèòü
è áåç åãî ïðåäâàðèòåëüíîé àêòèâàöèè â ñëó÷àå äîâîëüíî
èíòåíñèâíîãî âîçäåéñòâèÿ, ÷òî îòìå÷åíî ïðè îáðàáîòêå
ðàñòåíèé òÿæåëûìè ìåòàëëàìè (Mishra, Shoudhuri, 1999;
Sandalio et al., 2001), UV-C-îáëó÷åíèÿ (Barka, 2001), ñîëåâîì ñòðåññå (Muthukumarasamy et al., 2000; Santos et
al., 2001), îõëàæäåíèÿ (Michaeli et al., 2001), òåïëîâîì
ñòðåññå (Liu, Huang, 2000), çàòîïëåíèè (Êàëàøíèêîâ è
äð., 1999), èíîêóëÿöèè ïàòîãåíàìè (Hernandez et al.,
2004) è äð. Ïîñòåïåííîå ñíèæåíèå àêòèâíîñòè ÑÎÄ îòìå÷åíî â êëåòêàõ è òêàíÿõ ðàñòåíèé ïðè èõ ñòàðåíèè
(Abarca et al., 2001; Sairam et al., 2003). Ïðè÷èíû ñíèæå-
íèÿ àêòèâíîñòè ÑÎÄ ìîãóò áûòü ðàçíîîáðàçíûìè, íàïðèìåð èñòîùåíèå ïóëà ôåðìåíòîâ óñèëåííûì
åãî
•–
ðàñõîäîâàíèåì íà ãàøåíèå ðàäèêàëîâ O2 . Êðîìå òîãî,
ïîñêîëüêó àêòèâíîñòü ÑÎÄ ÿâëÿåòñÿ ðåçóëüòàòîì êàê åå
ñèíòåçà, òàê è äåãðàäàöèè, óìåíüøåíèå àêòèâíîñòè ìîæåò áûòü ñëåäñòâèåì ñíèæåíèÿ ñèíòåçà è(èëè) ïîâûøåíèÿ äåãðàäàöèè ìîëåêóë ÑÎÄ.  èíàêòèâàöèè è äåãðàäàöèè ÑÎÄ ìîãóò ïðèíèìàòü ó÷àñòèå ÀÔÊ — ãèäðîêñèëüíûå ðàäèêàëû è ïåðîêñèä âîäîðîäà (Casano et al., 1997).
 ÷àñòíîñòè, H2O2 ìîæåò âîññòàíàâëèâàòü Cu2+ â àêòèâíîì öåíòðå ôåðìåíòà äî Cu+, êîòîðûé, âçàèìîäåéñòâóÿ ñ
íîâîé ìîëåêóëîé ïåðîêñèäà âîäîðîäà, îáðàçóåò Cu2+OH• .
Ýòîò ñâÿçàííûé in situ ðàäèêàë OH• âûçûâàåò îêèñëèòåëüíóþ ìîäèôèêàöèþ àìèíîêèñëîòíûõ ïîñëåäîâàòåëüíîñòåé â àêòèâíîì öåíòðå ôåðìåíòà, ÷òî ïðèâîäèò ê
åãî èíàêòèâàöèè (Casano et al., 1997). Íå òîëüêî ñâÿçàííûå, íî è ñâîáîäíûå ðàäèêàëû OH• ïîâðåæäàþò ìîëåêóëû ÑÎÄ, âûçûâàÿ èõ ôðàãìåíòàöèþ (Casano et al., 1997).
Ïîäòâåðæäåíèåì ó÷àñòèÿ ÀÔÊ â ñíèæåíèè àêòèâíîñòè
ÑÎÄ ÿâëÿåòñÿ ðàáîòà Ìóòóêóìàðàñàìè è ñîàâòîðîâ
(Muthukumarasamy et al., 2000), â êîòîðîé îòìå÷åíî, ÷òî
îáðàáîòêà ðàñòåíèé ðåäèñà ðàñòâîðàìè ïàêëîáóòðàçîëà è
òðèàäèìåôîíà, õèìè÷åñêèìè àíòèîêñèäàíòàìè ñïîñîáñòâîâàëà ñîõðàíåíèþ àêòèâíîñòè ÑÎÄ è óëó÷øàëà
óñòîé÷èâîñòü ðàñòåíèé ê ñîëåâîìó ñòðåññó.
Ñíèæåíèå àêòèâíîñòè ôåðìåíòà ïðè íåáëàãîïðèÿòíûõ âîçäåéñòâèÿõ ñïîñîáñòâóåò äàëüíåéøåìó óâåëè÷åíèþ ïðîäóêöèè ÀÔÊ è ðàçâèòèþ îêèñëèòåëüíûõ ïîâðåæäåíèé êëåòîê è òêàíåé ðàñòåíèé (Jiang, Huang, 2001).
Ðåãóëÿöèÿ àêòèâíîñòè ÑÎÄ
Ðåãóëÿöèÿ àêòèâíîñòè ÑÎÄ íà óðîâíå
ò ð à í ñ ê ð è ï ö è è, ò ð à í ñ ë ÿ ö è è è ï ó ò å ì ï î ñ ò ò ð à íñ ë ÿ ö è î í í î é ì î ä è ô è ê à ö è è. Äîñòàòî÷íî âàæíûì
ÿâëÿåòñÿ âîïðîñ îòíîñèòåëüíî ðåãóëÿöèè ÑÎÄ. Ëèòåðàòóðíûå äàííûå ñâèäåòåëüñòâóþò î òîì, ÷òî ðåãóëÿöèÿ
àêòèâíîñòè ôåðìåíòà ïðîèñõîäèò íà ðàçíûõ óðîâíÿõ: íà
óðîâíå òðàíñêðèïöèè, òðàíñëÿöèè è(èëè) ïóòåì ïîñòòðàíñëÿöèîííîé ìîäèôèêàöèè ìîëåêóë ÑÎÄ.  ÷àñòíîñòè, ïîêàçàíî, ïðè îáðàáîòêå ðàñòåíèé êóêóðóçû ìåòèëâèîëîãåíîì àêòèâàöèÿ ÑÎÄ â ëèñòüÿõ ðàñòåíèé áûëà
îáóñëîâëåíà óâåëè÷åíèåì òðàíñêðèïöèè ñîîòâåòñòâóþùèõ ãåíîâ (Scandalios, 1993). Ïàðàëëåëüíîå óâåëè÷åíèå
àêòèâíîñòè ÑÎÄ è êîëè÷åñòâà ñîîòâåòñòâóþùèõ òðàíñêðèïòîâ ïðè ñòðåññîâûõ âîçäåéñòâèÿõ îòìå÷åíî è äðóãèìè àâòîðàìè (Casano et al., 1994; Hernandez et al., 2000;
Hurst et al., 2002; Del Rio et al., 2003). Îäíàêî íå âñåãäà
èçìåíåíèÿ â àêòèâíîñòè ÑÎÄ êîððåëèðóþò ñ ñîîòâåòñòâóþùèìè èçìåíåíèÿìè â êîëè÷åñòâå òðàíñêðèïòîâ (Williamson, Scandalios, 1992; Madamanchi et al., 1994; Slesak
et al., 2003). Òàê, ïðè îáðàáîòêå ðàñòåíèé êóêóðóçû öåðêîñïîðèíîì îòìå÷åíî ñíèæåíèå êîëè÷åñòâà òðàíñêðèïòîâ ÑÎÄ â ëèñòüÿõ, îäíàêî îáùàÿ àêòèâíîñòü ôåðìåíòà è
êîëè÷åñòâî áåëêà íå èçìåíèëèñü (Williamson, Scandalios,
1992). Òàêæå îáðàáîòêà ðàñòåíèé ãîðîõà SO2 âûçâàëà
óâåëè÷åíèå àêòèâíîñòè ôåðìåíòà, îäíàêî êîëè÷åñòâî ñîîòâåòñòâóþùèõ ìàòðè÷íûõ ÐÍÊ (ìÐÍÊ) îñòàëîñü êîíñòàíòíûì, ÷òî ñâèäåòåëüñòâóåò î ñóùåñòâîâàíèè àäàïòèâíûõ ïîñòòðàíñêðèïöèîííûõ ñîáûòèé è(èëè) ñèíòåçå
äîïîëíèòåëüíûõ ìîëåêóë ÑÎÄ ñ ìÐÍÊ, êîòîðûå óæå
ïðèñóòñòâîâàëè â êëåòêàõ ê ìîìåíòó âîçäåéñòâèÿ (Madamanchi et al., 1994). Äàííûå î ðåãóëÿöèè àêòèâíîñòè ÑÎÄ
íà ïîñòòðàíñëÿöèîííîì óðîâíå ïðèâåäåíû â ðàáîòàõ
Ñóïåðîêñèääèñìóòàçà â êëåòêàõ ðàñòåíèé
Áðîåòòî è ñîàâòîðîâ (Broetto et al., 2002), Äåëü Ðèî è ñîàâòîðîâ (Del Rio et al., 2003) è Ãîìåîç è ñîàâòîðîâ (Gomez et al., 2003/2004). Ïîñêîëüêó ôåðìåíò àêòèâèðóåòñÿ
ñóáñòðàòîì (Thompson et al., 1987), àêòèâàöèÿ ìîëåêóë
ÑÎÄ ïðè ýòîì, î÷åâèäíî, îáóñëîâëåíà óâåëè÷åíèåì ïðîäóêöèè ñóïåðîêñèäíûõ ðàäèêàëîâ â óñëîâèÿõ ñòðåññà.
Òàêèì îáðàçîì, íà ïåðâûõ ýòàïàõ ñòðåññîâîãî âîçäåéñòâèÿ, âåðîÿòíî, ïðîèñõîäèò àêòèâàöèÿ ñóùåñòâóþùèõ
ìîëåêóë ÑÎÄ è, âîçìîæíî, ñèíòåç ôåðìåíòà ñ ïðèñóòñòâóþùèõ ìàòðèö (ìÐÍÊ). Åñëè ýòîãî íåäîñòàòî÷íî äëÿ
îáåñïå÷åíèÿ àäàïòàöèè ðàñòåíèé, âêëþ÷àåòñÿ ñèíòåç íîâûõ ìÐÍÊ è ìîëåêóë ÑÎÄ, ò. å. â êàæäîì êîíêðåòíîì ñëó÷àå àêòèâíîñòü ôåðìåíòà ðåãóëèðóåòñÿ â çàâèñèìîñòè îò
ìåòàáîëè÷åñêèõ ïîòðåáíîñòåé êëåòîê, ÷òî â ñâîþ î÷åðåäü
îïðåäåëÿåòñÿ èíòåíñèâíîñòüþ ñòðåññîâîãî âîçäåéñòâèÿ,
åãî äëèòåëüíîñòüþ, ÷óâñòâèòåëüíîñòüþ ðàñòåíèé è äð.
 í ó ò ð è ê ë å ò î ÷ í û å ì î ë å ê ó ë û è è î í û, î ê àç û â à þ ù è å ð å ã ó ë è ð ó þ ù å å â ë è ÿ í è å í à à ê ò è âí î ñ ò ü Ñ Î Ä è ý ê ñ ï ð å ñ ñ è þ å å ã å í î â. Î÷åíü ìàëî
èçâåñòíî î ïóòÿõ ñèãíàëüíîé òðàíñäóêöèè, êîòîðûå ïðèâîäÿò ê èíäóêöèè àíòèîêñèäàíòíîé çàùèòû, â òîì ÷èñëå
è ÑÎÄ. Êàê ñâèäåòåëüñòâóþò ëèòåðàòóðíûå äàííûå,
ïðåäïîëàãàåìûìè ó÷àñòíèêàìè â öåïè ïåðåäà÷è ñèãíàëîâ, ïðèâîäÿùèõ ê àêòèâàöèè ÑÎÄ è ýêñïðåññèè åå ãåíîâ,
ÿâëÿþòñÿ ÀÔÊ (Kardish et al., 1994; Herbette et al., 2003),
èîíû êàëüöèÿ (Jiang, Zhang, 2003), îêñèä àçîòà (NO) (Herbette et al., 2003; Neil et al., 2003), ãëóòàòèîí (Herouart et al .,
1993), ôèòîãîðìîíû, â ÷àñòíîñòè ÀÁÊ (Kaminaka et al.,
1999; Bellaire et al., 2000), è ñàëèöèëîâàÿ êèñëîòà (Scandalios, 1997; Herbette et al., 2003). Ðàññìîòðèì áîëåå ïîäðîáíî
âîçìîæíîå ó÷àñòèå êàæäîãî èç ýòèõ êîìïîíåíòîâ â àêòèâàöèè ÑÎÄ è ðåãóëÿöèè ýêñïðåññèè åå ãåíîâ.
×òî êàñàåòñÿ ÀÔÊ, èçâåñòíî, ÷òî â ïîâûøåííûõ êîëè÷åñòâàõ îíè îêàçûâàþò íå òîëüêî âðåäíîå âîçäåéñòâèå
íà êëåòêè è òêàíè, íî òàêæå ÿâëÿþòñÿ ñèãíàëüíûìè ìîëåêóëàìè, ó÷àñòâóþùèìè â àêòèâàöèè çàùèòíûõ ñèñòåì
(Foyer et al., 1997; Neill et al., 2002). Ñóùåñòâóåò ïðåäïîëîæåíèå î òîì, ÷òî òàê íàçûâàåìàÿ îêèñëèòåëüíàÿ âñïûøêà — óñèëåííàÿ âíå- èëè âíóòðèêëåòî÷íàÿ ïðîäóêöèÿ
ÀÔÊ â 1-å ìèí âîçäåéñòâèÿ — ÿâëÿåòñÿ íà÷àëüíûì ñîáûòèåì â öåïè ïåðåäà÷è ñèãíàëîâ, êîòîðîå çàïóñêàåò
(âêëþ÷àåò) ðàáîòó äðóãèõ ìåõàíèçìîâ çàùèòû (Foyer et
al., 1997; Lamb, Dixon, 1997). Óâåëè÷åíèå ïðîäóêöèè
ÀÔÊ, î÷åâèäíî, èçìåíÿåò ðåäîêñ-ñîñòîÿíèå îïðåäåëåííûõ âíóòðèêëåòî÷íûõ ìàêðîìîëåêóë; èõ îêèñëåíèå èëè
âîññòàíîâëåíèå ïðèâîäèò ê àêòèâàöèè èëè èíãèáèðîâàíèþ ïîñëåäóþùèõ ïðîöåññîâ â öåïè ïåðåäà÷è ñèãíàëîâ.
Òàê, Ñëåñàê è ñîàâòîðû (Slesak et al., 2003) ïðåäïîëîæèëè, ÷òî ýêñïðåññèÿ ãåíîâ ÑÎÄ â õëîðîïëàñòàõ ðåãóëèðóåòñÿ, õîòÿ áû ÷àñòè÷íî, èçìåíåíèåì ðåäîêñ-ñîñòîÿíèÿ
ïåðåíîñ÷èêîâ ýëåêòðîíîâ â ýëåêòðîí-òðàíñïîðòíîé öåïè
ôîòîñèíòåòè÷åñêîãî àïïàðàòà. Ðåçóëüòàòû èññëåäîâàíèé
Õåðáåòò è ñîàâòîðîâ (Herbette et al., 2003) òàêæå ñâèäåòåëüñòâóþò î òîì, ÷òî ÀÔÊ èíäóöèðóþò ýêñïðåññèþ ãåíîâ ÑÎÄ íà óðîâíå òðàíñêðèïöèè. Ïðè ýòîì áûëî îòìå÷åíî, ÷òî ãåíû ÑÎÄ ïî-ðàçíîìó (ñïåöèôè÷íî)
îòâå÷àþò
•–
íà óâåëè÷åíèå ïðîäóêöèè ÀÔÊ (O2 , 1O2, H2O2). Êîëè÷åñòâî òðàíñêðèïòîâ ïëàñòèäíîé èçîôîðìû ëèñòüåâ ïîäñîëíóõà, îáîçíà÷åííîé àâòîðàìè ÑÎÄha-1, óâåëè÷åíî â
2 ðàçà â îòâåò íà âíåêëåòî÷íóþ è õëîðîïëàñòíóþ ïðîäóêöèþ ñóïåðîêñèäíûõ àíèîí-ðàäèêàëîâ, òîãäà êàê äðóãèå ÀÔÊ íå âëèÿëè íà ýêñïðåññèþ äàííîãî ãåíà (Herbette
et al., 2003). Êîëè÷åñòâî òðàíñêðèïòîâ äðóãîé èçîôîðìû
(öèòîçîëüíîé ÑÎÄha-2) óâåëè÷åíî
â îòâåò íà 1O2 è âíå•–
êëåòî÷íóþ ïðîäóêöèþ O2 . Ïåðîêñèä âîäîðîäà ïðè ýòîì
469
íå îêàçûâàë âëèÿíèÿ íà òðàíñêðèïöèþ îáîèõ ãåíîâ (Herbette et al., 2003). Îäíàêî íà îñíîâàíèè èìåþùèõñÿ ëèòåðàòóðíûõ äàííûõ íåâîçìîæíî êîíêðåòíî îïðåäåëèòü
ðîëü è ìåñòî ÀÔÊ â ïðîöåññàõ, ïðèâîäÿùèõ ê ýêñïðåññèè ãåíîâ ÑÎÄ. Äåéñòâèÿ ÀÔÊ, ïðè ýòîì, î÷åâèäíî, ìîãóò áûòü ïðÿìûìè, ïîñêîëüêó â ïðîìîòîðíûõ ó÷àñòêàõ
ãåíîâ ÑÎÄ îáíàðóæåíû ëîêóñû, ÷óâñòâèòåëüíûå ê ÀÔÊ
(Kardish et al., 1994; Tsukamoto et al., 2005), ÷òî áóäåò
ðàññìîòðåíî íèæå. Òàêæå ó÷àñòèå ÀÔÊ â ýêñïðåññèè ãåíîâ ÑÎÄ ìîæåò áûòü îïîñðåäîâàíî, êàê îòìå÷åíî âûøå,
èçìåíåíèåì îêèñëèòåëüíî-âîññòàíîâèòåëüíîãî ñîñòîÿíèÿ îïðåäåëåííûõ âíóòðèêëåòî÷íûõ ìîëåêóë, ÿâëÿþùèõñÿ çâåíüÿìè â öåïè ïåðåäà÷è ñèãíàëîâ.  ëþáîì ñëó÷àå ýêñïðåññèÿ ãåíîâ ÑÎÄ ÿâëÿåòñÿ ÷óâñòâèòåëüíîé ê ðåäîêñ-ñîñòîÿíèþ â êëåòêå (öèòîïëàçìàòè÷åñêîìó è(èëè)
ÿäåðíîìó), è íàðóøåíèå áàëàíñà ìåæäó ïðîäóêöèåé è
ëèêâèäàöèåé ÀÔÊ â ñòîðîíó ïîâûøåííîé ïðîäóêöèè,
î÷åâèäíî, ÿâëÿåòñÿ íåîáõîäèìûì ñîáûòèåì â èçìåíåíèè
ýêñïðåññèè ãåíîâ ÑÎÄ.
Êðîìå ÀÔÊ â ðåãóëÿöèè àêòèâíîñòè ÑÎÄ ïðèíèìàþò ó÷àñòèå òàêæå èîíû êàëüöèÿ (Ca2+). Îòìå÷åíî, ÷òî
óâåëè÷åíèå êîíöåíòðàöèè Ca2+ â öèòîçîëå êëåòîê ÿâëÿëîñü îäíèì èç íåîáõîäèìûõ óñëîâèé àêòèâàöèè ôåðìåíòà â ëèñòüÿõ êóêóðóçû (Jiang, Zhang, 2003). Îäíàêî â ðàáîòå Ïðàéñ è ñîàâòîðîâ (Price et al., 1994) ïîêàçàíî èíãèáèðóþùåå âëèÿíèå èîíîâ êàëüöèÿ íà àêòèâíîñòü ÑÎÄ â
ðàñòåíèÿõ òàáàêà ïðè èõ îáðàáîòêå ðàñòâîðîì ïåðåêèñè
âîäîðîäà. Îáðàáîòêà èíãèáèòîðîì êàëüöèåâûõ êàíàëîâ
ëàíòàíîì ïðèâåëà ê óâåëè÷åíèþ àêòèâíîñòè ÑÎÄ. Ìåõàíèçì èíãèáèðîâàíèÿ äåéñòâèÿ ôåðìåíòà êàëüöèåì íåèçâåñòåí, íî, êàê ïðåäïîëàãàþò àâòîðû, âîçìîæíî, çäåñü
äåéñòâóþò Ca-çàâèñèìûå ïðîòåèíêèíàçû è(èëè) ïðîòåàçû (Price et al., 1994). Îòìå÷åíî, ÷òî âíåøíÿÿ îáðàáîòêà
ðàñòåíèé ðàéãðàñà ðàñòâîðîì êàëüöèÿ (CaCl2) íà àêòèâíîñòü ÑÎÄ íå âëèÿëà, õîòÿ è ïðèâîäèëà ê óâåëè÷åíèþ
ñîäåðæàíèÿ âíóòðèêëåòî÷íîãî êàëüöèÿ (Jiang, Huang,
2001). Òàêèì îáðàçîì, èìåþùèåñÿ â ëèòåðàòóðå äàííûå îá
ó÷àñòèè Ca2+ â ðåãóëÿöèè ÑÎÄ ðàçëè÷íû, è íåîáõîäèìû
äàëüíåéøèå èññëåäîâàíèÿ â èçó÷åíèè äàííîãî âîïðîñà.
×òî êàñàåòñÿ ó÷àñòèÿ ôèòîãîðìîíîâ â ðåãóëÿöèè àêòèâíîñòè ÑÎÄ è ýêñïðåññèè åå ãåíîâ, òî çäåñü îòìå÷åíà
íåêàÿ ñïåöèôèêà îòâåòîâ (Zhu, Scandalios, 1994; Herbette
et al., 2003). Òàê, ïðè îáðàáîòêå ëèñòüåâ ïîäñîëíóõà æàñìîíîâîé êèñëîòîé, ýòåôîíîì, ñàëèöèëîâîé è àáñöèçîâîé
êèñëîòàìè íå áûëî èçìåíåíèé â êîëè÷åñòâå ìÐÍÊ õëîðîïëàñòíîé èçîôîðìû ÑÎÄha-1 (Herbette et al., 2003).
Îäíàêî ïðè îáðàáîòêå ðàñòåíèé ýòåôîíîì èìåëî ìåñòî
íàêîïëåíèå òðàíñêðèïòîâ äðóãîé èçîôîðìû ÑÎÄ — öèòîçîëüíîé ÑÎÄha-2 (Herbette et al., 2003).  äðóãèõ ðàáîòàõ îòìå÷åíî âëèÿíèå àáñöèçîâîé êèñëîòû (Zhu, Scandalios, 1994; Kaminaka et al., 1999), ãèáåððåëëèíà è êèíåòèíà, íî íå ÀÁÊ (Kurepa etal., 1997) íà ðåãóëÿöèþ ãåíîâ
ÑÎÄ. ×òî êàñàåòñÿ ÀÁÊ, îòìå÷åíî åå ó÷àñòèå â èíäóêöèè
ýêñïðåññèè ãåíîâ, êîäèðóþùèõ ðàçíûå èçîôîðìû ôåðìåíòà: CuZnÑÎÄ (Sakamoto et al., 1995; Kaminaka et al.,
1999), MnÑÎÄ (Bueno et al., 1998; Kaminaka et al., 1999) è
FeÑÎÄ (Kaminaka et al., 1999). Ïðè ýòîì äåéñòâèå ôèòîãîðìîíîâ, êàê è â ñëó÷àå ÀÔÊ, ìîæåò áûòü ïðÿìûì, ïîñêîëüêó â ïðîìîòîðíûõ ó÷àñòêàõ ãåíîâ ÑÎÄ îáíàðóæåíû ëîêóñû, ÷óâñòâèòåëüíûå ê ôèòîãîðìîíàì (Scandalios,
1997; Bellaire et al., 2000). Êðîìå òîãî, î÷åâèäíî, ñóùåñòâóåò ñëîæíàÿ âíóòðèêëåòî÷íàÿ ðàáî÷àÿ ñåòü, âêëþ÷àþùàÿ â ñåáÿ êðîìå ôèòîãîðìîíîâ äðóãèå êîìïîíåíòû, â
÷àñòíîñòè óæå îòìå÷åííûå ÀÔÊ è èîíû êàëüöèÿ. Îòìå÷åíî îäíîâðåìåííîå ó÷àñòèå ÀÔÊ è Ca2+ â àêòèâàöèè
470
Â. Â. Áàðàíåíêî
ÑÎÄ ïðè îáðàáîòêå ðàñòåíèé êóêóðóçû ðàñòâîðàìè ÀÁÊ
(Jiang, Zhang, 2003). Ê ñîæàëåíèþ, àâòîðû íå èçó÷àëè
êîíöåíòðàöèþ ÀÁÊ â êëåòêàõ, à ïðèìåíèëè òîëüêî ýêçîãåííóþ îáðàáîòêó ðàñòåíèé ðàñòâîðàìè
ÀÁÊ. Ïðè ýòîì
•–
îòìå÷åíî óâåëè÷åíèå ïðîäóêöèè O2 , èîíîâ êàëüöèÿ è àêòèâàöèè ÑÎÄ. Îáðàáîòêà ðàñòåíèé èíãèáèòîðàìè ÍÀÄÔîêñèäàçû èìèäàçîëîì
è ïèðèäèíîì áëîêèðîâàëà óâåëè•–
÷åíèå ïðîäóêöèè O2 ; àêòèâíîñòü ÑÎÄ ïðè ýòîì íå èçìåíÿëàñü (Jiang, Zhang, 2003). Òàêèì îáðàçîì, äëÿ àêòèâàöèè
ÑÎÄ íåîáõîäèìî óâåëè÷åíèå êîëè÷åñòâà ñóïåðîêñèäíûõ
ðàäèêàëîâ. Ïðè îáðàáîòêå ðàñòåíèé õåëàòîðîì êàëüöèÿ
(ÝÃÒÀ) è èíãèáèòîðàìè êàëüöèåâûõ êàíàëîâ (âåðàïàìèëîì è La3+) íå îòìå÷åíî àêòèâàöèè ÍÀÄÔ-îêñèäàçû, óâåëè÷åíèÿ êîëè÷åñòâà ÀÔÊ è àêòèâíîñòè ÑÎÄ. Òàêèì îáðàçîì, íå òîëüêî ÀÔÊ, íî è Ca2+ âîâëå÷åíû â àêòèâàöèþ
ÑÎÄ, âûçâàííóþ îáðàáîòêîé ÀÁÊ. Ïðè ýòîì ìû âñå æå
ìîæåì óñòàíîâèòü íåêóþ ïîñëåäîâàòåëüíîñòü ñîáûòèé:
óâåëè÷åíèå êîíöåíòðàöèè Ca2+ â êëåòêå íåîáõîäèìî äëÿ
àêòèâàöèè ÍÀÄÔ-îêñèäàçû è ñîîòâåòñòâåííî âîçðàñòàíèÿ
ïðîäóêöèè ñóïåðîêñèäíûõ ðàäèêàëîâ. Îäíàêî íå âñåãäà
èçìåíåíèÿ êîíöåíòðàöèè Ca2+ â êëåòêå ïðåäøåñòâóþò
óâåëè÷åíèþ ïðîäóêöèè ÀÔÊ. Îòìå÷åíî, ÷òî â êëåòêàõ
ñóñïåíçèéíîé êóëüòóðû òàáàêà, îáðàáîòàííûõ ðàñòâîðîì
•–
ñàëèöèëîâîé êèñëîòû, âîçðàñòàíèå ïðîäóêöèè O2 ïðîèñõîäèò ðàíüøå óâåëè÷åíèÿ êîíöåíòðàöèè Ca2+ â êëåòêå
(Kawano et al., 1998).  ëþáîì ñëó÷àå ýòè ñîáûòèÿ òåñíî
ñâÿçàíû è íåîáõîäèìû äëÿ àêòèâàöèè ÑÎÄ.
Ðåãóëèðóþùåå âëèÿíèå íà àêòèâíîñòü ÑÎÄ îêàçûâàåò òàêæå ãëóòàòèîí. Îòìå÷åíî ó÷àñòèå ãëóòàòèîíà â ýêñïðåññèè ãåíà, êîäèðóþùåãî öèòîçîëüíóþ èçîôîðìó
CuZnÑÎÄ â êëåòêàõ ëèñòüåâ òàáàêà (Herouart et al., 1993).
Ïðè ýòîì ïîêàçàíî, ÷òî òîëüêî âîññòàíîâëåííûé ãëóòàòèîí (íî íå åãî îêèñëåííàÿ ôîðìà) èíäóöèðóåò ýêñïðåññèþ ãåíà. Òàêèì îáðàçîì, îêèñëåíèå ãëóòàòèîíà èëè åãî
âîññòàíîâëåíèå (ò. å. óæå îòìå÷åííîå ðåäîêñ-ñîñòîÿíèå)
âëèÿåò íà ýêñïðåññèþ ãåíîâ ÑÎÄ. Ìåõàíèçì äåéñòâèÿ
ãëóòàòèîíà ïðè ýòîì íå óñòàíîâëåí. Â ýêñïåðèìåíòàõ íà
êëåòêàõ ïå÷åíè êðûñ ïîêàçàíî, ÷òî ââåäåíèå ãëóòàòèîíà,
öèñòåèíà è äðóãèõ ñóëüôãèäðèëüíûõ ñîåäèíåíèé ïðèâåëî ê àêòèâàöèè ÑÎÄ, ÷òî, ïî ìíåíèþ àâòîðîâ, îáóñëîâëåíî âîññòàíîâëåíèåì SH-ñîåäèíåíèÿìè èîíîâ ìåäè
(Cu2+) â àêòèâíîì öåíòðå ôåðìåíòà (Hoshino et al., 1985).
Âàæíîé ñèãíàëüíîé ìîëåêóëîé â êëåòêàõ ðàñòåíèé
ÿâëÿåòñÿ îêñèä àçîòà (NO) (Neill et al., 2003). Îòìå÷åíî
ó÷àñòèå NO â ðåãóëÿöèè ýêñïðåññèè ãåíîâ ÑÎÄ (Herbette
et al., 2003). Ïðè ýòîì ïîêàçàíî, ÷òî êîëè÷åñòâî ìÐÍÊ
ãåíà, êîäèðóþùåãî ÑÎÄha-1, íå èçìåíèëîñü â îòâåò íè
íà ïðîäóêöèþ NO, íè íà åãî óäàëåíèå, òîãäà êàê êîëè÷åñòâî òðàíñêðèïòîâ äðóãîé èçîôîðìû (ÑÎÄha-2) çíà÷èòåëüíî óâåëè÷èëîñü ïðè îáåèõ îáðàáîòêàõ (Herbette et
al., 2003). Òàêèì îáðàçîì, êàê è â ñëó÷àå ÀÔÊ, ìû âèäèì
ñïåöèôèêó îòâåòîâ ãåíîâ ÑÎÄ íà èçìåíåíèå êîíöåíòðàöèè NO. Îäíàêî íåïîñðåäñòâåííàÿ ðîëü NO â ýêñïðåññèè
ãåíîâ ÑÎÄ íå óñòàíîâëåíà.
Îòìå÷åíî òàêæå ó÷àñòèå ôîñôàòàç è(èëè) êèíàç è ñîîòâåòñòâåííî ïðîöåññîâ ôîñôîðèëèðîâàíèÿ—äåôîñôîðèëèðîâàíèÿ â ðåãóëÿöèè ýêñïðåññèè ãåíîâ ÑÎÄ (Herbette et al., 2003). Îáðàáîòêà ëèñòüåâ ïîäñîëíóõà èíãèáèòîðîì ôîñôàòàçû êàíòàðèäèíîì, à òàêæå èíãèáèòîðîì
ñåðèí/òðåîíèí-êèíàçû ñòàóðîñïîðèíîì íå âëèÿëà íà ýêñïðåññèþ ãåíà ÑÎÄha-1, òîãäà êàê êîëè÷åñòâî òðàíñêðèïòîâ ãåíà, êîäèðóþùåãî ÑÎÄha-2, óâåëè÷èëîñü ïðè îáåèõ
îáðàáîòêàõ (Herbette et al., 2003). Î÷åâèäíî, ôîñôîðèëèðîâàíèå—äåôîñôîðèëèðîâàíèå îïðåäåëåííûõ áåëêîâ ïðèâîäèò ê èçìåíåíèþ èõ àêòèâíîñòè, ÷òî â ñâîþ
î÷åðåäü êîñâåííî âëèÿåò íà ýêñïðåññèþ ãåíîâ ÑÎÄ. Âûñêàçàíî ïðåäïîëîæåíèå î òîì, ÷òî ïðîöåññû ôîñôîðèëèðîâàíèÿ—äåôîñôîðèëèðîâàíèÿ ïðè ýòîì ìîäóëèðóþòñÿ
èçìåíåíèåì êîíöåíòðàöèè ÀÔÊ â êëåòêå (Herbette et al.,
2003).
Òàêèì îáðàçîì, ðàññìîòðåíî âîçìîæíîå ó÷àñòèå
ÀÔÊ, èîíîâ êàëüöèÿ, ãëóòàòèîíà, ôèòîãîðìîíîâ, êèíàç
è(èëè) ôîñôàòàç â àêòèâàöèè ÑÎÄ è ýêñïðåññèè åå ãåíîâ.
Î÷åâèäíî, ýòî äàëåêî íå ïîëíûé ïåðå÷åíü, è åùå ïðåäñòîèò îïðåäåëèòü è èçó÷èòü íîâûå êîìïîíåíòû è èõ ìåñòî è ðîëü â ðåãóëÿöèè ÑÎÄ.
à å í û Ñ Î Ä: ñ ï å ö è ô è ê à è õ î ò â å ò î â. Äëÿ ïîíèìàíèÿ ìåõàíèçìîâ, ïðè ïîìîùè êîòîðûõ ãåíîì âîñïðèíèìàåò âîçäåéñòâèÿ ñòðåññîâûõ ôàêòîðîâ, íåîáõîäèìî
èäåíòèôèöèðîâàòü ñîîòâåòñòâóþùèå ãåíû, èçó÷èòü èõ
ñòðóêòóðó è ðåãóëÿöèþ. Âûäåëåíû è èçó÷åíû ãåíû, êîäèðóþùèå ðàçëè÷íûå èçîôîðìû ÑÎÄ â êëåòêàõ êóêóðóçû (Scandalios, 1997), òàáàêà (Van Camp et al., 1996b),
ðèñà (Kaminaka et al., 1999; Lee et al., 2001), àðàáèäîïñèñà (Kleibenstein et al., 1998) è äð.  ÷àñòíîñòè, â ëèñòüÿõ
êóêóðóçû èçîôîðìû ÑÎÄ êîäèðóþòñÿ 9 íåàëëåëüíûìè
ãåíàìè: 4 ãåíàìè öèòîçîëüíîé ôîðìû CuZnÑÎÄ (Sod-2,
Sod-4, Sod-4A è Sod-5), 4 — ìèòîõîíäðèàëüíîé MnÑÎÄ
(Sod-3.1, Sod-3.2, Sod-3.3 è Sod-3.4) è 1 ãåíîì õëîðîïëàñòíîé CuZnÑÎÄ (Zhu, Scandalios, 1994; Scandalios, 1997).
Èçó÷åíèå àìèíîêèñëîòíûõ ïîñëåäîâàòåëüíîñòåé èçîôîðì ÑÎÄ êàæäîãî ñåìåéñòâà ïîêàçàëî èõ ãîìîëîãè÷íîñòü â ïðåäåëàõ ñåìåéñòâ (95 %); êîäèðóþùèå ó÷àñòêè
ñîîòâåòñòâóþùèõ ãåíîâ òàêæå âûñîêîãîìîëîãè÷íû (Kernodle, Scandalios, 1996; Scandalios, 1997). Îäíàêî ýòè
ãåíû, êàê ìû îòìåòèëè âûøå, ïî-ðàçíîìó îòâå÷àþò íà
âîçäåéñòâèÿ ñòðåññîâûõ ôàêòîðîâ, óâåëè÷åíèå êîëè÷åñòâà ÀÔÊ, îáðàáîòêó ôèòîãîðìîíàìè è ò. ä. Îíè ïî-ðàçíîìó ðåãóëèðóþòñÿ âî âðåìÿ ðîñòà è ðàçâèòèÿ ðàñòåíèé
(Zhu, Scandalios, 1994; Guan, Scandalios, 1998). Òàê, êîëè÷åñòâî ìàòðè÷íîé ÐÍÊ CuZnÑÎÄ õëîðîïëàñòîâ ìîëîäûõ ëèñòüåâ òàáàêà áûëî â 4 ðàçà âûøå ïî ñðàâíåíèþ ñ
òàêîâûì çðåëûõ ëèñòüåâ (Kurepa et al., 1997). ×òî êàñàåòñÿ FeÑÎÄ, òî åå àêòèâíîñòü, íàîáîðîò, ïîâûøàëàñü ñ
óâåëè÷åíèåì âîçðàñòà ðàñòåíèé. Ïîêàçàíî, ÷òî êîëè÷åñòâî òðàíñêðèïòîâ ãåíîâ Sod-4 è Sod-4A áûëî îäèíàêîâûì
ïðè ïðîðàùèâàíèè ñåìÿí êóêóðóçû (Guan, Scandalios,
1998), îäíàêî â êëåòêàõ ìîëîäûõ ëèñòüåâ ïðîðîñòêîâ
çíà÷èòåëüíî ïðåîáëàäàëî êîëè÷åñòâî òðàíñêðèïòîâ ãåíà
Sod-4A (Guan, Scandalios, 1998). Êðîìå òîãî, ãåíû ïî-ðàçíîìó îòâå÷àëè íà ðàçíîîáðàçíûå ñòðåññîâûå âîçäåéñòâèÿ, òàêèå êàê èíòåíñèâíîå îñâåùåíèå, îáðàáîòêà öåðêîñïîðèíîì, H2O2 è ÀÁÊ (Kernodle, Scandalios, 1996;
Guan, Scandalios, 1998). Ïðè÷èíîé ðàçëè÷íîé ðåãóëÿöèè
ýêñïðåññèè ãåíîâ ÑÎÄ â ïðîöåññå ðîñòà è ðàçâèòèÿ, à
òàêæå ïðè ñòðåññîâûõ âîçäåéñòâèÿõ ÿâëÿåòñÿ ðàçëè÷èå
èõ ïðîìîòîðíûõ ó÷àñòêîâ, è ýòî ãîâîðèò î òîì, ÷òî îíè
ðåãóëèðóþòñÿ ðàçíûìè ìåõàíèçìàìè. Òàê, ïðîìîòîðíûå
ó÷àñòêè ãåíà, êîäèðóþùåãî ïëàñòèäíóþ CuZnÑÎÄ, ñîäåðæàò ëîêóñû, êîíòðîëèðóåìûå ñâåòîâûìè ñèãíàëàìè,
÷òî, î÷åâèäíî, ãîâîðèò îá ó÷àñòèè â ýòèõ ïðîöåññàõ êèñëîðîäíûõ ðàäèêàëîâ (Kardish et al., 1994). Êðîìå òîãî, â
äàííûõ ãåíàõ îáíàðóæåíû ó÷àñòêè, êîòîðûå äåéñòâóþò
íå â óñëîâèÿõ îêèñëèòåëüíîãî ñòðåññà, à â ïðîöåññàõ ðîñòà è ðàçâèòèÿ ðàñòåíèé. Ïðîìîòîðíûé ó÷àñòîê ãåíà
Sod-3.1 â ëèñòüÿõ êóêóðóçû ñîäåðæèò ëîêóñ, îòâå÷àþùèé
íà âîçäåéñòâèå ñàëèöèëîâîé êèñëîòû, òîãäà êàê â äðóãèõ
ãåíàõ ýòîãî ñåìåéñòâà (Sod-3.2, Sod-3.3 è Sod-3.4) äàííûé ëîêóñ îòñóòñòâóåò (Scandalios, 1997). Îäíàêî ïîñëåäíèå èìåþò ó÷àñòêè, îòâå÷àþùèå íà âîçäåéñòâèå
Ñóïåðîêñèääèñìóòàçà â êëåòêàõ ðàñòåíèé
ÀÁÊ, òîãäà êàê ãåí Sod-3.1 íå èìååò òàêîâîãî (Scandalios,
1997).  ïðîìîòîðíîì ó÷àñòêå ãåíà, êîäèðóþùåãî öèòîçîëüíóþ CuZnÑÎÄ â ïðîðîñòêàõ ðèñà, îáíàðóæåí
cis-ýëåìåíò, ÷óâñòâèòåëüíûé ê îêèñëèòåëüíîìó ñòðåññó
è íàçâàííûé CORE (coordinative regulatory element for
antioxidative defense; Tsukamoto et al., 2005). Ýòîò ýëåìåíò îòâå÷àë íà îáðàáîòêó ìåòèëâèîëîãåíîì (èíäóêòîðîì ñóïåðîêñèäíûõ ðàäèêàëîâ) è íå àêòèâèðîâàëñÿ ïðè
äåéñòâèè H2O2. Òàêæå îòìå÷åíî ó÷àñòèå MAP-êèíàç â èçìåíåíèè àêòèâíîñòè CORE è ýêñïðåññèè ãåíà (Tsukamoto et al., 2005). Ïðè ýòîì MAP-êèíàçû âûñòóïàþò â ðîëè
íåãàòèâíîãî ðåãóëÿòîðà ýòèõ ïðîöåññîâ: îáðàáîòêà îáðàçöîâ èíãèáèòîðîì MAP-êèíàç ñòàóðîñïîðèíîì óâåëè÷èâàëà êàê àêòèâíîñòü CORE, òàê è ýêñïðåññèþ ãåíà,
êîäèðóþùåãî CuZnÑÎÄ (Tsukamoto et al., 2005). Òàêèì
îáðàçîì, ýêñïðåññèÿ ãåíîâ ÑÎÄ êîíòðîëèðóåòñÿ óíèêàëüíûìè äëÿ êàæäîãî ãåíà ìåõàíèçìàìè, ÷òî îáóñëîâëåíî
ðàçëè÷èåì èõ ïðîìîòîðíûõ ó÷àñòêîâ. Ó Escherichia coli
çà ýêñïðåññèþ ãåíà ÑÎÄ îòâå÷àåò äâóõãåííûé ëîêóñ
soxRS, â êîòîðîì îáà ãåíà äåéñòâóþò ïîñëåäîâàòåëüíî (Hidalgo, Demple, 1997). Ïðîäóêò ïåðâîãî ãåíà soxR (SoxR)
ÿâëÿåòñÿ ðåäîêñ-÷óâñòâèòåëüíûì; åãî ïðÿìîå îêèñëåíèå
èëè âîññòàíîâëåíèå àíèîí-ðàäèêàëàìè ñóïåðîêñèäà ïðèâîäèò ê àêòèâàöèè èëè èíãèáèðîâàíèþ òðàíñêðèïöèè
ñëåäóþùåãî ãåíà — soxS, êîòîðûé îòâå÷àåò çà ñèíòåç àêòèâàòîðà òðàíñêðèïöèè (SoxS), íåïîñðåäñòâåííî ñòèìóëèðóþùåãî ýêñïðåññèþ ãåíà ÑÎÄ (Hidalgo, Demple,
1997). Â êëåòêàõ ðàñòåíèé íå îáíàðóæåíî ãîìîëîãîâ
òðàíñêðèïöèîííûõ ôàêòîðîâ SoxR è SoxS, îäíàêî èçâåñòíû äðóãèå ôàêòîðû òðàíñêðèïöèè, òàêèå êàê AP-1 (activator protein-1) è NF-IB (nuclear factor) (Scandalios,
1997). Âîçìîæíî, èçìåíåíèå ðåäîêñ-ñîñòîÿíèÿ ôàêòîðîâ
òðàíñêðèïöèè âëèÿåò íà ýêñïðåññèþ ãåíîâ Sod (Zhu,
Scandalios, 1994).
Ð å ã ó ë ÿ ö è ÿ à ê ò è â í î ñ ò è è ç î ô î ð ì Ñ Î Ä,
íàõîäÿùèõñÿ â ðàçëè÷íûõ âíóòðèêëåòî÷íûõ
ê î ì ï à ð ò ì å í ò à õ. Òàêæå ïðåäñòàâëÿåò èíòåðåñ ñïåöèôè÷åñêàÿ ðåãóëÿöèÿ èçîôîðì ÑÎÄ, ò. å. òî, êàêèì îáðàçîì ìèòîõîíäðèàëüíàÿ MnÑÎÄ îòâå÷àåò íà ñîáûòèÿ â
ìèòîõîíäðèÿõ, à õëîðîïëàñòíàÿ FeÑÎÄ — â õëîðîïëàñòàõ, òîãäà êàê âñå ãåíû ÑÎÄ ðàñïîëîæåíû â ÿäðå. Î÷åâèäíî, ñóùåñòâóþò ñèãíàëüíûå êîìïîíåíòû, ñïåöèôè÷íûå äëÿ êàæäîãî êëåòî÷íîãî êîìïàðòìåíòà. Ýòè ìîëåêóëû, âåðîÿòíî, ÿâëÿþòñÿ ïåðâè÷íûìè ñåíñîðàìè è îäíîâðåìåííî ïåðåíîñ÷èêàìè; îíè äîëæíû áûòü íåáîëüøèìè ïî ìîëåêóëÿðíîé ìàññå, ïîñêîëüêó èì íåîáõîäèìî
áûñòðî òðàíñïîðòèðîâàòüñÿ èç êîìïàðòìåíòà â ÿäðî.
Ïðåäïîëàãàþò, ÷òî òàêîâûìè ÿâëÿþòñÿ îêñèëèïèíû,
ïðîèçâîäíûå îêèñëåíèÿ ñâîáîäíûõ æèðíûõ êèñëîò
(Bowler, 1992). Æèðíûå êèñëîòû, ñïåöèôè÷åñêèå äëÿ
õëîðîïëàñòîâ, ìèòîõîíäðèé è ïëàçìàòè÷åñêîé ìåìáðàíû, îêèñëÿþòñÿ àêòèâíûìè ôîðìàìè êèñëîðîäà ñ îáðàçîâàíèåì ãèäðîôèëüíûõ ìîëåêóë, êîòîðûå ìîãóò òðàíñïîðòèðîâàòüñÿ â ÿäðî è âçàèìîäåéñòâîâàòü ñ îïðåäåëåííûìè ôàêòîðàìè òðàíñêðèïöèè, ÷òî ïðèâîäèò ê
àêòèâàöèè ýêñïðåññèè ãåíà, êîäèðóåìîãî íåîáõîäèìóþ
ôîðìó ÑÎÄ. Àíàëîãàìè îêñèëèïèíîâ â êëåòêàõ æèâîòíûõ è ÷åëîâåêà ÿâëÿþòñÿ ïðîñòàãëàíäèíû, ëåéêîòðèåíû
è ëèïîêñèíû (Samuelsson et al., 1987).
Ìû ðàññìîòðåëè ó÷àñòèå â ðåãóëÿöèè àêòèâíîñòè
ÑÎÄ è ýêñïðåññèè åå ãåíîâ ðàçëè÷íûõ âíóòðèêëåòî÷íûõ
ìàêðîìîëåêóë. Ñêîðåå âñåãî, îíè ðàáîòàþò íå ñàìîñòîÿòåëüíî, à âîâëå÷åíû â ñëîæíóþ âíóòðèêëåòî÷íóþ ðàáî÷óþ ñåòü. Îäíàêî ìíîãèå äåòàëè ôóíêöèîíèðîâàíèÿ ðàáî÷åé ñåòè íå óñòàíîâëåíû.
471
Òàêèì îáðàçîì, ñóïåðîêñèääèñìóòàçà èãðàåò âàæíóþ
ðîëü â çàùèòå êëåòîê è òêàíåé îò îêèñëèòåëüíûõ ïîâðåæäåíèé â óñëîâèÿõ ðîñòà è ðàçâèòèÿ ðàñòåíèé, à òàêæå ïðè äåéñòâèè íåáëàãîïðèÿòíûõ ôàêòîðîâ. Îäíàêî
ïðè ðàáîòå ÑÎÄ îáðàçóåòñÿ ïåðîêñèä âîäîðîäà, êîòîðûé, êàê óæå îòìå÷åíî, ÿâëÿåòñÿ èíãèáèòîðîì ôåðìåíòà.
Ïîýòîìó ýôôåêòèâíîå ôóíêöèîíèðîâàíèå ÑÎÄ â çíà÷èòåëüíîé ñòåïåíè îïðåäåëÿåòñÿ ôóíêöèîíèðîâàíèåì äðóãèõ êîìïîíåíòîâ ñèñòåìû çàùèòû, â ÷àñòíîñòè òåõ, êîòîðûå óäàëÿþò ïåðîêñèä âîäîðîäà (êàòàëàç, ïåðîêñèäàç) è
ôåðìåíòîâ àñêîðáàò-ãëþòàòèîííîãî öèêëà.
Ñïèñîê ëèòåðàòóðû
Ãðèøêî Â. Í., Ñûùèêîâ Ä. Â. 1999. Ïåðîêñèäíîå îêèñëåíèå ëèïèäîâ è ôóíêöèîíèðîâàíèå íåêîòîðûõ àíòèîêèñëèòåëüíûõ ôåðìåíòíûõ ñèñòåì ó êóêóðóçû è îâñà ïðè îñòðîì ïîðàæåíèè ôòîðèñòûì âîäîðîäîì. Óêð. áèîõèì. æóðí. 71 (3) : 51—57.
Êàëàøíèêîâ Þ. Å., Áàëàõíèíà Ò. È., Áåííè÷åëëè Ð. Ï.,
Ñòåïíåâñêèé Â., Ñòåïíåâñêàÿ Ñ. 1999. Àêòèâíîñòü àíòèîêèñëèòåëüíîé ñèñòåìû è èíòåíñèâíîñòü ïåðåêèñíîãî îêèñëåíèÿ
ëèïèäîâ â ðàñòåíèÿõ ïøåíèöû â ñâÿçè ñ ñîðòîâîé óñòîé÷èâîñòüþ ê ïåðåóâëàæíåíèþ ïî÷âû. Ôèçèîë. ðàñò. 46 (2) : 268—
275.
Êàëàøíèêîâ Þ. Å., Áàëàõíèíà Ò. È., Çàêðæåâñêèé Ä. À.
1994. Äåéñòâèå ïî÷âåííîé ãèïîêñèè íà àêòèâàöèþ êèñëîðîäà è
ñèñòåìó çàùèòû îò îêèñëèòåëüíîé äåñòðóêöèè â êîðíÿõ è ëèñòüÿõ ÿ÷ìåíÿ. Ôèçèîë. ðàñò. 41 (4) : 583—588.
Êóðãàíîâà Ë. Í., Âåñåëîâ À. Ï., Ãîí÷àðîâà Ò. À., Ñèíèöûíà Þ. Â. 1997. Ïåðåêèñíîå îêèñëåíèå ëèïèäîâ è àíòèîêñèäàíòíàÿ ñèñòåìà çàùèòû õëîðîïëàñòîâ ãîðîõà ïðè òåïëîâîì øîêå.
Ôèçèîë. ðàñò. 44 (5) : 725—730.
Ìåðçëÿê Ì. Í. 1989. Àêòèâèðîâàííûé êèñëîðîä è îêèñëèòåëüíûå ïðîöåññû â ìåìáðàíàõ ðàñòèòåëüíîé êëåòêè. Èòîãè íàóêè è òåõíèêè. Ñåð. «Ôèçèîëîãèÿ ðàñòåíèé». Ì.: ÂÈÍÈÒÈ. 6 :
167 ñ.
Abarca D., Martin M., Sabater B. 2001. Differential leaf response in young and senescent plants. Physiol. Plant. 113 : 409—
415.
Alonso R., Elvira S., Castillo F. J., Gimeno B. S. 2001. Interactive effects of ozone and drought stress on pigments and activities
of antioxidative enzymes in Pinus halepensis. Plant, Cell Envir.
24 : 905—916.
Asada K. 1966. Radical production and scavenging in the chloroplasts. In: Photosynthesis and the environment. Netherlands: Kluwer Acad. Publ., Dordrecht. 123—150.
Babithaa M. P., Bhath S. G., Prakasha H. S., Shettya H. S.
2002. Different induction of superoxide dismutase in downy mildew-resistant and -susceptible genotypes of pearl millet. Plant Pathol. 51 : 480—486.
Barka E. A. 2001. Protective enzymes against reactive oxygen
species during ripening of tomato (Lycopersicon esculentum) fruits
in response to low amounts of UV-C. Austr. J. Plant Physiol. 28 :
785—791.
Basu U., Good A. G., Taylor G. J. 2001. Transgenic Brassica
napus plants overexpressing aluminium-induced mitochondrial
manganese superoxide dismutase cDNA are resistant to aluminium.
Plant, Cell Envir. 24 : 1269—1278.
Beauchamp C. O., Fridovich I. 1973. Isozymes of superoxide
dismutase from wheat germ. Biochim. biophys. acta. 317 : 50—64.
Bellaire B. A., Carmody J., Braud J., Gossett D., Banks S., Lucas M., Fowler T. E. 2000. Involvement of abscisic acid-dependent
and -independent pathways in the upregulation of antioxidant enzyme activity during NaCl stress in cotton callus tissue. Free Radic.
Res. 33 : 531—545.
Bowler C., Van Montagu M., Inze D. 1992. Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol.
43 : 83—116.
Broetto F., Lüttge U., Ratajczak R. 2002. Influence of light intensity and salt-treatment on mode of photosynthesis and enzymes
472
Â. Â. Áàðàíåíêî
of the antioxidative response system of Mesembryanthemum crystallinum. Funct. Plant Biol. 29 : 13—23.
Bueno P., Del Rio L. A. 1992. Purification and properties of
glyoxysomal cuprozinc superoxide dismutase from watermelom cotyledons (Citrullus vulgaris Schrad). Plant Physiol. 98 : 332—336.
Bueno P., Piqueras A., Kurepa J., Savoure A., Verbruggen N.,
Van Montagu M., Inze D. 1998. Expression of antioxidant enzymes
in response to abscisic acid and high osmoticum in tobacco BY-2
cell cultures. Plant Sci. 138 : 27—34.
Casano L. M., Gomes L. D., Lascano H. R., Gonzales C. A.,
Trippi V. S. 1997. Inactivation and degradation of CuZn-SOD by
active oxygen species in wheat chloroplasts exposed to photooxidative stress. Plant Cell Physiol. 38 : 433—440.
Casano L. M., Martin M., Sabater B. 1994. Sensitivity to superoxide dosmutase transcript levels and activities to oxidative stress
is lower in mature-senescent than in young barley leaves. Plant
Physiol. 106 : 1033—1039.
Christov K., Bakardjieva N. T. 1999. Effect of calcium and
zinc on subcellular distribution, activity and thermosensitivity of
superoxide dismutase in Mnium affine. Biol. Plant. 42 : 57—63.
Corpas F. J., Sandalio L. M., Del Rio L. A., Trelease R. N.
1998. Copper-zinc cuperoxide dismutase is a constituent enzyme of
the matrix of peroxisomes in the cotyledons of oilseed plants. New
Phytol. 138 : 307—314.
Del Rio L. A., Sandalio L. M., Altomare D., Zilinskas B. 2003.
Mitochondria and peroxisomal manganese superoxide dismutase:
different expression during leaf senescence. J. Exp. Bot. 54 :
923—933.
Droillard M., Paulin A. 1990. Isozymes of superoxide dismutase in mitochondria and peroxisomes isolated from petals of carnation (Dianthus caryophyllus) during senescence. Plant Physiol. 94 :
1187—1192.
Edreva A., Yordanov I., Kardjieva R., Gesheva E. 1998. Heat
shock responses of bean plants: involvement of free radicals? Antioxidants and free radical/active oxygen scavenging systems. Biol.
Plant. 41 : 185—191.
Foyer C. H., Delgado H. L., Dat J. F., Scott I. M. 1997. Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signaling. Physiol. Plant. 100 : 241—254.
Fu J., Huang B. 2001. Involvement of antioxidants and lipid
peroxidation in the adaptation of two cool-season grasses to localized drought stress. Envir. Exp. Bot. 45 : 105—114.
Gao X., Ren Z., Zhao Y., Zhang H. 2003. Overexpression of
SOD increases salt tolerance of Arabidopsis. Plant Physiol. 133 :
1873—1881.
Garcia A., Baquedano F. J., Navarro P., Castillo F. J. 1999.
Oxidative stress induced by copper in sunflower plants. Free Radic.
Res. 31 : 51—57.
Gomez J., Jimenez A., Olmos E., Sevilla F. 2003/4. Location
and effects of long-term NaCl stress on superoxide dismitase and
ascorbate peroxidase isoenzymes of pea (Pisum sativum, cv. Puget)
chloroplasts. J. Exp. Bot. 55 : 119—130.
Guan L., Scandalios J. G. 1998. Two structurally similar maize cytosolic superoxide dismutase genes, Sod4 and Sod4A, respond
differentially to abscisic acid and high osmoticum. Plant Physiol.
117 : 217—224.
Hayakawa T., Kanematsu S., Asada K. 1984. Occurrence of
CuZn-superoxide dismutase in the thylakoid space of spinach chloroplasts. Plant Cell Physiol. 25 : 883—889.
Herbette S., Lene C., de Iabrouhe D., Drevet J., Roeckel-Drevet P. 2003. Transcripts of sunflower antioxidant scavengers of the
SOD and GPX families accumulate differentially in response to downy mildew infection, photohormones, reactive oxygen species,
nitric oxide, protein kinase and phosphatase inhibitors. Physiol.
Plant. 119 : 418—428.
Hernandez J. A., Campillo A., Jimenes A., Alarcon J. J., Sevilla F. 1999. Response of antioxidant systems and leaf water relations to NaCl stress in pea. New Phytologist. 141 : 241—251.
Hernandez J. A., Jimenes A., Mullineaux P., Sevilla F. 2000.
Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with the induction of antioxidant defences. Plant, Cell Environ. 23 : 853—862.
Hernandez J., Rubio M., Olmos E., Ros-Barcelo A., MartinezGomez P. 2004. Oxidative stress induced by long-term plum pox
virus infection in peach (Prunus persica). Physiol. Plant. 122 :
486—495.
Herouart D., Van Montagu M., Inze D. 1993. Redox-activated
expression of the cytosolic copper/zinc superoxide dismutase gene
in Nicotiana. Proc. Nat. Acad. Sci. USA. 90 : 3108—3112.
Hidalgo E., Demple B. 1997. Spacing pf promoter elements regulates the basal expression of the soxS gene and convetrs SoxR
from a transcriptional activator into z repressor. EMBO J. 16 :
1056—1065.
Hoshino T., Ohta V., Ishigino I. 1985. The effect of sulfhydryl
compounds on the catalytic activity of Cu,Zn-superoxide dismutase
purified from rat liver. Experientia. 41 : 1416—1419.
Hurst A., Grams T., Ratajczak R. 2002. Effects of salinity, high
irradiance, ozone, and ethylene on mode of photosynthesis, oxidative stress and oxidative damage in the C3/CAM intermediate plant
Mesembryanthemum crystallinum L. Plant, Cell Envir. 27 :
187—197.
Iturbe-Ormaetxe I., Escuredo P., Arrese-Igor C., Becana M.
1998. Oxidative damage in pea plants exposed to water deficit or
paraquat. Plant Physiol. 116 : 173—181.
Jiang Y., Huang B. 2001. Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool-season grasses. J. Exp. Bot. 52 : 341—349.
Jiang M., Zhang J. 2001. Effect of abscisic acid on active oxygen species, antioxidative defense system and oxidative damage in
leaves of maize seedlings. Plant Cell Physiol. 42 : 1265—1273.
Jiang M., Zhang J. 2003. Cross-talk between calcium and reactive oxygen species originated from NADPH oxidase in abscisic
acid-induced antioxidant defence in leaves of maize seedlings.
Plant, Cell Envir. 26 : 929—939.
Kaminaka H., Morita S., Tokumoto M., Masumura T., Tanaka K. 1999. Differential gene expression of rice superoxide dismutase isoforms to oxidative and anvironmental stresses. Free Radic.
Res. 31 : 219—225.
Kami*nska-Ro¿ek E., Pukacki P. 2004. Effect of water deficit
on oxidative stress and degradation of cell membranes in needles of
Norway spruce (Picea abies). Acta physiol. plant. 26 : 431—442.
Kang H.-M., Saltveit M. 2001. Activity of enzymatic antioxidant defense systems in chilled and heat shocked cucumber seedling radicles. Physiol. Plant. 113 : 548—556.
Kardish N., Magal N., Aviv D., Galun E. 1994. The tomato
gene for the chloroplastic Cu,Zn-superoxide dismutase: regulation
of expression imposed in transgenic tobacco plants by a short promoter. Plant Mol. Biol. 25 : 887—897.
Kawano T., Sahashi N., Takahashi K., Uozumi N., Muto S.
1998. Salicylic acid induces extracellular superoxide generation
followed by an increase in cytosolic calcium ion in tobacco suspension culture; the earliest events in salicylic acid signal transduction.
Plant Cell Physiol. 39 : 721—730.
Keele B. B., McCord J. M., Fridovich I. 1970. Superoxide dismutase from Escherichia coli B. A new manganese-containing enzyme. J. Biol. Chem. 245 : 6176—6181.
Kernodle S. P., Scandalios J. G. 1996. A comparison of the
structure and function of the highly homologous maize antioxidant
Cu/Zn superoxide dismutase genes, Sod4 and Sod4A. Genetics.
144 : 317—328.
Kitagawa Y., Tanaka Y., Hata M., Kusunoki M., Lee G. P.
1991. Three-dimensional structure of CuZn-superoxide dismutase
from spinach at 2.0 Å resolution. J. Biochem. 109 : 477—485.
Kliebenstein D. J., Monde R.-A., Last R. L. 1998. Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant Physiol. 118 : 637—
650.
Kuk Y. I., Shin J. S., Burgos N., Hwang T., Han O., Cho B. H.,
Jung S., Guh J. O. 2003. Antioxidative enzymes offer protection
from chilling damage in rice plants. Crop Sci. 43 : 2109—2117.
Kurepa J., Herouart D., Van Montagu M., Inze D. 1997. Differential expression of Cu,Zn- and Fe-superoxide dismutase genes of
tobacco during development, oxidative stress and hormonal treatment. Plant Cell Physiol. 38 : 463—470.
Ñóïåðîêñèääèñìóòàçà â êëåòêàõ ðàñòåíèé
Kuzniak E., Sklodowska M. 2004. The effect of Botrytis cinerea infection on the antioxidant profile of mitochondria from tomato leaves. J. Exp. Bot. 55 : 605—612.
Lamb C., Dixon R. A. 1977. The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48 : 251—
275.
Lee D. H., Kim Y. S., Lee C. B. 2001. The inductive responses
of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). J. Plant Physiol. 158 : 737—745.
Liu X., Huang B. 2000. Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop. Sci. 40 : 503—
510.
Logan B. A., Demmig-Adams B., Adams W. W. 1998. Antioxidants and xanthophyll cycle-dependent energy dissipation in Cucurbita pepo L. and Vinca major L. Upon a sudden increase in
growth PPFD in the field. J. Exp. Bot. 49 : 1881—1888.
Madamanchi N., Donahue J., Cramer C., Alscher R., Pederson K. 1994. Differential response of Cu,Zn superoxide dismutase
in two pea cultivars during a short term exposure to sulfur dioxide.
Plant Mol. Biol. 26 : 95—103.
Mann T., Keilin D. 1938. Hemocuprein and hepatocuprein copper-protein compounds of blood and liver in mammals. Proc.
R. Soc. Lond. B. 126 : 303—315.
McCord J. M., Fridovich I. 1969. Superoxide dismutase: an
enzymatic function for erythrocuprein (hemocuprein). J. Biol.
Chem. 244 : 6056—6063.
Michaeli R., Philosoph-Hadas S., Rion J., Shahak Y., Meir S.
2001. Chilling-induced leaf abscission of Ixora coccinea plants. III.
Enhancement by high light via increased oxidative processes. Physiol. Plant. 113 : 338—345.
Mishra A., Choudhuri M. A. 1999. Effects of salicylic acid on
heavy metal-induced membrane deterioration mediated by lipoxygenase in rice. Biol. Plant. 42 : 409—415.
Mittova V., Tal M., Volokita M., Guy M. 2003. Up-regulation
of the leaf motochondrial and peroxisomal antioxidative systems in
response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant, Cell Envir. 26 :
845—856.
M*oller I. M. 2001. Plant mitochondria and oxidative stress:
electron transport, NADPH turnover, and metabolism of reactive
oxygen species. Ann. Rev. Plant Physiol. Plant Mol. Biol. 52 :
561—591.
Moran J. F., James E. K., Rubio M. C., Robert G. S., Klucas V., Becana M. 2003. Functional characterization and expression
of a cytosolic iron-superoxide dismutase from cowpea root nodules.
Plant Physiol. 133 : 773—782.
Muthukumarasamy M., Dutta Gupta S., Panneerselvam R.
2000. Enhancement of peroxidase, polyphenol oxidase and superoxide dismutase activities by triadimefon in NaCl stressed Raphanus
sativus L. Biol. Plant. 43 : 317—320.
Navari-Izzo F., Quartacci M. F., Pinzino C., Vecchia F. D.,
Sgherri C. L. M. 1998. Thylakoid-bound and stromal antioxidative
enzymes in wheat treated with excess copper. Physiol. Plant. 104 :
630—638.
Neill S. J., Desican R., Hancock J. T. 2002. Hydrogen peroxide signalling. Curr. Opin. Plant Biol. 5 : 388—395.
Neill S. J., Desican R., Hancock J. T. 2003. Nitric oxide signaling in plants. New Phytol. 159 : 11—35.
Nyman P. O. 1960. A modified method for the purification of
erytrocuprein. Buochim. biophys. acta. 45 : 387—389.
Ogawa K., Kanematsu S., Asada K. 1996. Intra and extra-cellular localization of «cytosolic» CuZn-superoxide dismutase in spinach leaf and hypocotyls. Plant Cell Physiol. 37 : 790—799.
Ogawa K., Kanematsu S., Asada K. 1997. Generation of superoxide anion and localuzation of CuZn-superoxide dismutase in
vascular tissue of spinach hypocotyls: their association with lignification. Plant Cell Physiol. 38 : 1118—1126.
Ogawa K., Kanematsu S., Takabe K., Asada K. 1995. Attachment of CuZn-superoxide dismutase to thylakoid membrane at the
site of superoxide generation (PSI) in spinach chloroplast: detection
by immunogold labeling after rapid freezing and substitution method. Plant Cell Physiol. 36 : 565—573.
473
Palatnik J. F., Carrillo N., Valle E. M. 1999. The role of photosynthetic electron transport in the oxidative degradation of chloroplastic glutamine synthetase. Plant Physiol. 121 : 471—478.
Palma J. M., Huertas E. L., Corpas F. J., Sandalio L. M., Gomez M., Del Rio L. A. 1998. Peroxisomal manganese superoxide
dismutase: purification and properties of the isozyme from pea leaves. Physiol. Plant. 104 : 720—726.
Parker M. W., Blake C. C., Barra D., Bossa F., Schinina M. E., Bannister W. H., Bannister J. V. 1987. Structural identity
between the iron and manganesecontaining superoxide dismutases.
Protein Engineering. 1 : 393—397.
Price A., Taylor A., Ripley A., Griffiths A., Trewavas A.,
Knight M. 1994. Oxidative signals in tobacco increase cytosolic
calcium. Plant Cell. 6 : 1301—1310.
Pryor W., Squadrito G. 1995. The chemistry of peroxynitrite: a
product from the reaction of nitric oxide with superoxide. Amer.
J. Physiol. 268 : L699—L700.
Rapp I., Adams W. C., Miller R. W. 1973. Purification of superoxide dismutase from fungi and characterization of the reaction of
the enzyme with catechols by electron spin resonance spectroscopy.
Can. J. Biochem. 51 : 158—171.
Rolke Y., Liu S., Quidde T., Williamson B., Schouten A., Weltring K.-M., Siewers V., Tenberge K., Tudzynski B., Tudzynski P.
2004. Functional analysis of H2O2-generating systems in Botrytis
cinerea: the major Cu,Zn-superoxide dismutase (BCSOD1) contributes to virulence on French bean, whereas a glucose oxidase
(BCGOD1) is dispensable. Mol. Plant Pathol. 5 : 17—22.
Sairam R. K., Singh D. V., Srivastava G. C. 2003. Changes in
activity of activity of antioxidant enzymes in sunflower leaves of
different ages. Biol. Plant. 47 : 61—66.
Sakamoto A., Okumura T., Kaminaka H., Sumi K., Tanaka K.
1995. Structure and differential response to abscisic acid of two
promoters for the cytosolic copper/zinc-superoxide dismutase genes, SodCc1 and SodCc2 in rice protoplasts. FEBS Lett. 358 :
62—66.
Salin M. L. 1987. Toxic oxygen species and protective systems
of the chloroplast. Physiol. Plant. 72 : 681—689.
Samuelsson B., Dahlen S.-E., Lindgren J. A., Rouzer C. A.,
Serhan C. N. 1987. Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science. 237 : 1171—1176.
Sandalio L., Dalurzo H., Gomez M., Romero-Puertas M.,
Del Rio L. 2001. Cadmium-induced changes in the growth
and oxidative metabolism of pea plants. J. Exp. Bot. 52 : 2115—
2126.
Sandalio L. M., Del Rio L. A. 1987. Localization of superoxide dismutase in glyoxysomes from Citrullus vulgaris. Functional
implications in cellular metabolism. J. Plant Physiol. 127 : 395—
409.
Santos C., Campos A., Azevedo H., Caldeira G. 2001. In situ
and in vitro senescence induced by KCl stress: nutritional imbalance, lipid peroxidation and antioxidant metabolism. J. Exp. Bot. 52 :
351—360.
Scandalios J. G. 1993. Oxygen stress and superoxide dismutase. Plant Physiol. 101 : 7—12.
Scandalios J. G. 1997. Molecular genetics of superoxide dismutase in plants. In: J. G. Scandalios. (Ed.). Oxidative stress and
the molecular biology of antioxidant defenses. New York: Cold
Spring Harbor Lab. Press. 527—568.
Schinkel H., Hertzberg M., Wingsle G. 2001. A small family of
novell CuZn-superoxide dismutases with high isoelectric points in
hybrid aspen. Planta. 213 : 272—279.
Schmitz-Eiberger M., Noga G. 2001. UY-B-radiation-influence on antioxidative components in Phaseolus vulgaris leaves.
J. Appl. Bot. 75 : 210—215.
Sk*orzy*nska-Polit E., Drazkiewicz M., Krupa Z. 2003/4. The activity of the antioxidant system in cadmium-treated Arabidopsis
thaliana. Biol. Plant. 47 : 71—78.
Slesak I., Karpinska B., Surowska E., Miszalski Z., Karpinski S. 2003. Redox changes in the chloroplasts and hydrogen peroxide are essential for regulation of C3-CAM transition and photooxidative stress responses in the facultative CAM plant Mesembtyanthenum crystallinum L. Plant Cell Physiol. 44 : 573—581.
474
Â. Â. Áàðàíåíêî
Thompson J. E., Legge R. L., Barber R. F. 1987. The role of
free radicals in senescence and wounding. New Phytologist. 105 :
317—344.
Tsukamoto S., Morita S., Hirano E., Yokoi H., Masumara T.,
Tanaka K. 2005. A novel cis-element that is responsive to oxidative
stress regulates three antioxidant defense genes in rice. Plant Physiol. 137 : 317—327.
Van Breusegem F., Slooten L., Stassart J., Moens T., Botterman J., Van Montagu M., Inze D. 1999. Overproduction of Arabidopsis thaliana FeSOD confers oxidative stress tolerance to transgenic maize. Plant Cell Physiol. 40 : 515—523.
Van Camp W., Capiau K., Van Montagu M., Inze D., Slooten L. 1996a. Enhancement of oxidative stress tolerance in transgenic tobacco plants overexpressing Fe-superoxide dismutase in chloroplasts. Plant Physiol. 112 : 1703—1714.
Van Camp W., Herouart D., Willekens H., Takahashi H., Saito K., Van Montagu M., Inze D. 1996b. Tissue-specific activity of
two manganese superoxide dismutase promoters in transgenic tobacco. Plant Physiol. 112 : 525—535.
Wanders R. J. A., Denis S. 1992. Identification of superoxide
dismutase in rat liver peroxisomes. Bopchim. biophys. acta. 1115 :
259—262.
Williamson J. D., Scandalios J. G. 1992. Differential response
of maize catalases and superoxide dismutases to the photoactivated
fungal toxin cercosporin. Plant J. 2 : 351—358.
Wu F., Zhang G., Dominy P. 2003. Four barley genotypes respond differently to cadmium: lipid peroxidation and activities of
antioxidant capacity. Environ. Exp. Bot. 50 : 67—78.
Yost F., Fridovich I. 1973. An iron-containing superoxide
dismutase from Escherichia coli. J. Biol. Chem. 248 : 4905—
4908.
Zhang J., Kirkham M. B. 1994. Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase
in wheat species. Plant Cell Physsiol. 35 : 785—791.
Zhu D., Scandalios J. G. 1994. Differential accumulation of
manganese-superoxide dismutase transcripts in maze in response
to abscisic acid and high osmoticum. Plant Physiol. 106 :
173—178.
Ïîñòóïèëà 8 VIII 2005
SUPEROXIDE DISMUTASE IN PLANT CELLS
V. V. Baranenko
Institute of Botany, National Academy of Sciences of the Ukraine, Kiev;
e-mail: cell@svitonline.com
Superoxide dismutase (SOD) is one of the key components of defense system, which protect cells and tissues from oxidative destruction. The unique nature of this enzyme among other antioxidants, its localization in different intracellular compartment are reviewed in addition to enzyme behaviour under unflavourable influences.
Besides, we considered questions of regulation of SOD activity, participation of such intracellular macromolecules as reactive oxygen species, calcium iones, phytogormones, and nitric oxide in this regulation, as well as
phosphoralation/dephosphorylation process.
Download