13 ЕН.Ф.03 Физика

advertisement
МИНОБРНАУКИ РОССИИ
Федеральное государственное бюджетное образовательное учреждение
высшего профессионального образования
«Майкопский государственный технологический университет»
Факультет
Кафедра
Аграрных технологий
Химии, физики и физико – химических методов исследования
УТВЕРЖДАЮ
Проректор по учебной работе
___________ Л.И. Задорожная
«_____»__________ 20____г.
РАБОЧАЯ ПРОГРАММА
по дисциплине
по специальности
(направлению)
ЕН.Ф.03 Физика
260601 Машины и аппараты пищевых производств
Факультет
Технологический факультет
Форма обучения
Очная, заочная
Майкоп
Рабочая программа составлена на основе ГОС ВПО и учебного плана МГТУ по
специальности 260601 Машины и аппараты пищевых производств
Составитель рабочей программы:
Старший преподаватель
(должность, ученое звание, степень)
(подпись)
Сиюхова Д.Б..
(Ф.И.О.)
Рабочая программа утверждена на заседании кафедры
Химии, физики и физико – химических методов исследования
(наименование кафедры)
Заведующий кафедрой
«___»________20___г.
Попова А.А.
(подпись)
Одобрено учебно-методической комиссией факультета
(где осуществляется обучение)
(Ф.И.О.)
«___»_________20__г.
Председатель
учебно-методического
совета направления (специальности)
(где осуществляется обучение)
(подпись)
(Ф.И.О.)
(подпись)
(Ф.И.О.)
(подпись)
(Ф.И.О.)
(подпись)
(Ф.И.О.)
Декан факультета
(где осуществляется обучение)
«___»_________20___г.
СОГЛАСОВАНО:
Начальник УМУ
«___»_________20___г.
Зав. выпускающей кафедрой
по направлению (специальности)
1.1. Цели и задачи дисциплины.
Целью преподавания дисциплины «Физика» является изучение студентами
основополагающих физических представлений о строении материального мира и
фундаментальных закономерностях в природе. Курс физики должен способствовать
формированию у будущего инженера по организации управления на транспорте научного
мышления и расширению его научно-технического кругозора.
Задачи курса:

овладеть основными понятиями физики, получить знания о важнейших физических
явлениях, моделях и методах физических исследований, способствующих
профессиональному росту будущего инженера по организации управления на
транспорте;

заложить
основы
трудовых
навыков,
расширить
общий
кругозор,
позицию,
правовую
профессиональную культуру;

воспитать
активную
жизненную
и
социальную
эрудированность и законопослушность, культуру быта, патриотизм.

создание
предпосылок
для
развития
интеллектуального
потенциала,
способствующего личностному росту и профессионализму в области управления
транспортом.
Требования к уровню освоения содержания дисциплины.
В
результате
изучения
дисциплины
«Физика»
студент
должен
иметь
представление:

- о Вселенной в целом как физическом объекте и её эволюции;

о динамических и статистических закономерностях в природе;

- о принципах симметрии и законах сохранения;

-о фундаментальных константах естествознания;

- о физическом моделировании;

-о новейших открытиях в физике.
Студент должен знать:
 -
физические
явления,
процессы,
общепрофессиональных дисциплин;
 - константы физики;
законы,
необходимые
для
освоения
 - единицы измерения физических величин;
 - способы измерения основных физических величин и лабораторные приборы.
Специалист должен уметь:

-производить
основные
физические
измерения,
обрабатывать
результаты
измерений и использовать для этого вычислительные средства;

работать по физической аппаратуре, представленной в лабораторном практикуме;

применять компьютеры для исследования физических процессов с использованием
моделей;

применять
полученные
знания
при
освоении
последующих
инженерных
дисциплин;

сомастоятельно работать с учебной, научной и справочной литературой.
1.2. Краткая характеристика дисциплины, ее место в учебном процессе.
Современная физика как наука является важнейшим достижением общечеловеческой
культуры в целом. Постоянное оперирование моделями при изучении физики
вырабатывает способность к абстрактному мышлению, выделению в том или ином
явлении главного, а широкое применение математического аппарата приучает к строгому
научному методу. Современный специалист любого профиля встречается в своей
практике с большим числом разнообразных механизмов, приборов и методов
исследования. Понять принципы действия большинства из них невозможно без
общефизической подготовки.
При изучении дисциплины необходимо дать панораму наиболее универсальных
методов, законов и моделей современной физики, продемонстрировать специфику
рационального
метода
познания
окружающего
мира,
сосредоточить
усилия
на
формировании у студентов общего физического мировоззрения и развитии физического
мышления.
1.3. Связь с предшествующими дисциплинами
Являясь самостоятельной учебной дисциплиной, курс физики, тем не менее, не
должен быть оторван от других дисциплин. Наоборот, надо, где это возможно, обращать
особое внимание на наличие междисциплинарных связей. История физики, как науки,
дает много прекрасных примеров такого рода
Успешное изучение данной дисциплины обеспечивается изучением дисциплин:

математика

информатика

химия

экология
1.4. Связь с последующими дисциплинами
Дисциплина
«Физика»
является
общепрофессиональных дисциплин:

Теоретическая механика

Прикладная механика

Сопротивление материалов

Материаловедение

Электротехника и электроника;
первой
ступенью
изучения
некоторых
2. Распределение часов по семестрам
таблица 1.
ОФО
68
34
17
17
52
экзамен
3
120
68
34
17
17
52
экзамен
4
110
51
34
17
59
экзамен
Лекции
Лабораторные
120
Практические
(семин.)
Общий объем
2
Всего
Номер семестра
Форма итоговой
аттестации (зачет,
экзамен)
Учебные занятия
Аудиторные
СРС
таблица 1.
4
2
6
108
1
экзамен
4
120
12
2
4
6
108
1
экзамен
5
110
12
2
4
6
98
1
экзамен
СРС
Лекции
Контр. работа
12
Лабораторные
120
Практические
(семин.)
Общий объем
3
Всего
Номер семестра
Учебные занятия
Аудиторные
Форма итоговой
аттестации (зачет,
экзамен)
ЗФО
3. Содержание дисциплины.
3.1. Наименование тем, их содержание, объем в часах лекционных занятий
Пор.
Номер
лекций
Раздел, тема учебного курса, содержание лекции
таблица 3
Количество часов
офо
зфо
ПЕРВЫЙ СЕМЕСТР
1
Введение.
Место физики в системе наук о природе. Эксперимент и
теория в физических исследованиях. Физические
модели.
Пространство
и
время
как
формы
существования материи.
2
Раздел I. Классическая механика.
Тема 1.1. Кинематика материальной точки.
2
3
4
1.1.1. Относительность движения. Системы отсчета.
Координатная и векторная формы описания движения
материальной
точки.
Перемещение,
скорость,
ускорение. Тангенциальное и нормальное ускорения.
Кинематика движения по криволинейной траектории.
Движение по окружности. Угловая скорость и угловое
ускорение и их связь с линейными характеристиками
движения.
1.1.2. Кинематика материальной точки в движущейся
системе
координат.
Преобразования
Галилея.
Классический закон сложения скоростей.
Тема 1.2. Динамика материальной точки.
4
1.2.1. Взаимодействие материальных тел. Инерциальные
и неинерциальные системы координат. Законы
Ньютона. Масса. Сила. Уравнения движения. Роль
начальных условий. Принцип относительности Галилея.
5
1.2.2. Фундаментальные взаимодействия в природе.
Силы в классической механике. Закон всемирного
тяготения. Свойства сил тяжести, упругости, трения.
6
2
1.2.3. Движение материальной точки в неинерциальной
системе отсчета. Силы инерции. Неинерциальность
системы координат, связанной с Землей, ее проявления
6
в геофизических явлениях.
Тема 1.3. Законы сохранения механики.
6
7
1.3.1.
Понятие
замкнутой
системы.
Импульс
материальной точки, системы материальных точек.
Закон сохранения и изменения импульса. Центр масс
системы материальных точек и закон его движения.
Реактивное движение.
8
1.3.2. Работа сил. Кинетическая энергия материальной
точки. Потенциальные и непотенциальные силы в
механике.
Потенциальная
энергия
системы
взаимодействующих тел. Закон сохранения и изменения
энергии в механике.
2
1.3.3. Момент импульса материальной точки и системы
материальных точек. Момент силы. Закон сохранения и
изменения момента импульса.
9
1.3.4.
Движение
твердого
тела.
Динамика
вращательного движения твердого тела относительно
неподвижной оси. Момент инерции твердых тел разной
формы. Теорема Штейнера. Тензор инерции. Главные
оси инерции. Уравнение моментов.
Тема 1.4. Законы механики в движущихся системах
отсчета.
10,11
4
Обобщенный принцип относительности. Основные
постулаты специальной теории относительности
Эйнштейна. Преобразования Лоренца. Релятивистский
закон сложения скоростей. Импульс и энергия точки в
релятивистской механике. Энергия покоя. Закон
сохранения полной энергии.
Тема 1.5.Элементы механики жидкости.
2
12
1.5.1.Давление в жидкости и газе. Уравнение
неразрывности. Уравнение Бернулли. Вязкость. Режим
течения жидкости.
Раздел II. Молекулярная физика и термодинамика.
Тема
2.1.
Основные
представления
молекулярно-
4
2
кинетической теории.
13
14
2.1.1. Идеальный газ как модельная термодинамическая
система.
Основное
уравнение
молекулярнокинетической теории идеального газа. Уравнение
Клапейрона-Менделеева.
Распределение
молекул
идеального газа по скоростям (распределение
Максвелла) и в поле потенциальных сил (распределение
Больцмана). Барометрическая формула. Атмосфера
Земли и других планет.
6
Тема 2.2. Основы термодинамики.
15
16
17
2.2.1. Внутренняя энергия идеального газа. Работа
термодинамической системы. Количество теплоты.
Теплоемкость. Закон равнораспределения энергии по
степеням свободы молекул.
2.2.2. Первый закон термодинамики. Обратимые и
необратимые процессы. Циклические процессы. Цикл
Карно. Коэффициент полезного действия тепловых
машин. Второй закон термодинамики.
2.2.3. Энтропия и ее статистическая интерпретация.
Возрастание энтропии при неравновесных процессах.
Границы применимости второго закона термодинамики.
Представление о термодинамике открытых систем.
Третье начало термодинамики. Синергетика и
экономика.
ВТОРОЙ СЕМЕСТР
2
Раздел III. Электричество и магнетизм.
Тема 3.1. Электростатика.
18
19
20
21
3.1.1. Электрический заряд и его свойства. Закон
Кулона. Электростатическое поле. Напряженность
электрического поля. Принцип суперпозиции полей.
3.1.2. Теорема Гаусса для электростатического поля в
вакууме. Применение теоремы Гаусса к расчету полей.
3.1.3. Диэлектрик в электрическом поле. Диполь.
Дипольный
момент.
Вектор
поляризации.
Электростатическая
теорема
Гаусса.
Вектор
электрической индукции. Уравнение Пуассона. Условия
на границе раздела двух сред.
3.1.4. Проводник в электрическом поле. Распределение
зарядов на проводнике. Электрическое поле внутри и
10
вне проводника. Электростатическая защита.
22
3.1.5. Электрическая емкость. Конденсаторы. Энергия
электрического
поля.
Плотность
энергии
электростатического поля.
8
Тема 3.2. Постоянный электрический ток.
23
3.2.1. Сила и плотность тока. Закон Ома для участка
цепи и замкнутого контура. Сторонние силы.
Электродвижущая сила. Напряжение. Сопротивление
проводников.
24
3.2.2. Закон Ома для однородного участка (в
интегральной и дифференциальной формах) и
замкнутой цепи. Закон Ома для неоднородного участка
цепи. Анализ ОЗО.
25
3.2.3. Разветвленные электрические цепи. Правила
Кирхгофа.
26
3.2.4. Работа и мощность электрического тока. Закон
Джоуля-Ленца. Превращения энергии в электрических
цепях.
Тема 3.3. Магнитное поле.
27
3.3.1. Магнитное поле тока. Законы Био-СавараЛапласа. Сила Ампера. Сила Лоренца. Вектор
магнитной индукции. Поток вектора магнитной
индукции через замкнутую поверхность. Теорема о
циркуляции вектора индукции магнитного поля.
28
3.3.2. Магнитные свойства вещества. Молекулярные
токи. Диа-, пара- и ферромагнетики. Вектор
намагниченности. Магнитная восприимчивость и
магнитная проницаемость. Представление о ядерном
магнитном резонансе и электронном парамагнитном
резонансе.
29
3.3.3. Электромагнитная индукция. Закон Фарадея.
Правило Ленца. Индуктивность. Самоиндукция.
Плотность энергии магнитного поля. Взаимоиндукция.
Трансформатор.
30
3.3.4.Основы теории Максвелла по обобщению
экспериментальных
законов
электромагнетизма:
вихревое электрическое поле, ток смещения. Уравнение
Максвелла и их физический смысл. Взаимные
превращения
электрических
магнитных
полей.
8
Электромагнитное поле- форма материи.
6
Раздел IV. Колебательные и волновые процессы.
31
Тема 4.1.
колебания.
Механические
и
электромагнитные
4.1.1.Свободные и гармонические колебания их
характеристики. Гармонический и ангармонический
осциллятор,
физический
смысл
спектрального
разложения.
32
4.1.2.Свободные колебания в идеализированном
колебательном контуре. Энергия электромагнитных
колебаний. Интерференция и дифракция волн.
Нормальные моды. Элементы Фурье- оптики.
Акустический спектр
33
4.1.3. Вынужденные механические колебания. Резонанс.
Вынужденные
электромагнитные
колебания.
Переменный ток. Активное, релятивистское, емкостное,
полное сопротивление цепи переменного тока. Резонанс
напряжений. Резонанс токов. Мощность, выделяемая в
цепи переменного тока.
2
Тема 4.2. Упругие волны.
34
4.2.1. Волновой процесс. Гармоническая волна и ее
описание. Уравнение бегущей волны. Фазовая скорость.
Волновое
уравнение.
Принцип
суперпозиции.
Групповая скорость. Интерференция волн. Стоячие
волны. Звуковые волны. Электромагнитные волны и их
источники. Вектор плотности потока электромагнитной
энергии. Импульс электромагнитного поля.
ТРЕТИЙ СЕМЕСТР
2
Раздел V. Элементы квантовой механики.
4
Тема 5.1. Элементы геометрической оптики.
35
26
5.1.1.Основные законы оптики. Полное отражение.
Линзы, тонкие линзы и их характеристики. Формула
тонкой
линзы.
Оптическая
сила.
Построение
изображений в линзах
5.1.2. Энергетические
фотометрии.
и
световые
Тема 5.2.Интерференция света.
величины
в
2
37
5.2.1.Вывод законов отражения и преломления света на
основе
волновой
теории.
Когерентность.
Интерференция.
Условия
интерференционных
максимума и минимума. Интерференция от двух
источников.
38
Тема 5.3. Дифракция света
2
5.3.1. Принцип Гюйгенса- Френеля. Дифракция на
круглом отверстии. Дифракция Фраунгофера на щели,
на дифракционной решетке. Формула Вульфа- Брегов.
39
Тема 5.4. Поляризация света.
2
5.4.1. Естественный и поляризованный свет. Закон
Малюса. Поляризация при отражении. Закон Брюстера.
Двойное лучепреломление. Применение поляризации в
автомобильном деле.
Тема 5.5. Дисперсия света.
2
5.5.1.
Нормальная
и
аномальная
дисперсия.
Определение угла отклонения монохроматического
света призмой. Поглощение света. Закон Бугера.
4
40
Тема 5.6. Квантовая природа излучения.
41
5.6.1. Тепловое излучение и его характеристики. Закон
Кирхгоффа, Стефана- Больцмана, Вина. Формула РелеяДжинса и Планка.
42
5.6.2. Внешний фотоэффект. Законы фотоэффекта.
Импульс фотона. Давление света. Эффект Комптона.
Тема 5.7. Элементы квантовой механике.
43
5.7.1. Корпускулярно- волновой дуализм. Некоторые
свойства де Бройля, Соотношение неопределенности.
Квантовые состояния. Уравнение суперпозиции.
Уравнение
движения
микрочастиц.
Операторы
физических величин.
44
5.7.2. Описание микрочастиц с помощью волновой
функции. Уравнение Шредингера для стационарных
состояний. Потенциальный барьер. Туннельный эффект.
45
5.7.3. Молекулы химической связи, понятие об
энергетических
уровнях.
Различные
типы
молекулярных спектров. Оптические квантовые лазеры.
46
5.7.4. Металлы, диэлектрики и полупроводники по
8
зонной теории. Проводимость p-n – перехода.
Фотопроводимость
полупроводников.
Полупроводниковые диоды и триоды.
Раздел VI. Атомная и ядерная физика.
8
Тема 6.1. Физика атомного ядра.
47
6.1.1. Атом. Ионизация атомов. Состав ядра. Дефект
масс. Энергия связи.
48
6.1.2. Ядерные силы. Модели ядра. Радиоактивное
излучение и его виды. Закон радиоактивного распада и
законы сохранения. Дельта- излучения и его свойства.
49
6.1.3. Правила смещения. Радиоактивные семейства.
Приборы для регистрации радиомагнитных излучений и
частиц.
50
6.1.4.Ядерные реакции и их классификации. Ядерные
реакторы. Термоядерные реакции элементарной
частицы.
2
Тема 6.2. Элементы физики элементарных частиц.
51
6.1.5. Космическое излучение. Элементарные частицы.
Типы
взаимодействий
элементарных
частиц.
Классификация элементарных частиц.
Итого
102
8
3.2. Практические (семинарские) занятия, их наименования, содержание и объем
в часах
таблица 3
Номер
Наименование темы семинарского
Раздел, тема дисциплины
Объём
занятия
занятия
часов
I Семестр
офо зфо
1
Прямолинейное
равномерное
и Раздел I. Классическая
2
равнопеременное
движение. механика.
Криволинейное движение.
Тема 1.1. Кинематика
материальной точки
2
Вращательное
движение.
Связь Раздел
I.
Классическая 2
угловых и кинематических величин.
механика.
Тема 1.1. Кинематика
материальной точки
3
Законы
Ньютона.
Импульс. Раздел
I.
Классическая 2
2
Механическая
энергия.
Работа. механика.
Мощность.
Тема
1.2.
Динамика
материальной точки.
4
Законы сохранения в механике.
Раздел
I.
Классическая 2
2
5
Релятивистский импульс, закон его
сохранения.
Энергия
в
релятивистской механике.
6
Законы идеального газа и уравнение
состояния. Внутренняя энергия и
работа расширения газов.
7
Теплоемкость. Количество теплоты.
КПД тепловых и холодильных
машин.
8
Первое
начало
термодинамики.
Энтропия и ее поведение в разных
изопроцессах
II Семестр
1
Закон Кулона. Электрическое поле и
его
характеристики.
Принцип
суперпозиций. Работа электрических
сил.
2
Постоянный
электрический
ток.
Закон Ома для участка цепи.
Сопротивление проводников. Закон
Ома для полной цепи. Правила
Кирхгофа.
3
Работа и мощность тока. Закон
Джоуля-Ленца.
4
5
6
7
8
механика.
Тема 1.3.Законы сохранения
механики.
Раздел
I.
Классическая
механика.
Тема 1.4. Законы механики в
движущихся системах отсчета.
Раздел
II.
Молекулярная
физика и термодинамика.
Тема
2.1.
Основные
представления молекулярнокинетической теории
Раздел
II.
Молекулярная
физика и термодинамика.
Тема
2.2.Основы
термодинамики.
Раздел
II.
Молекулярная
физика и термодинамика.
Тема
2.2.Основы
термодинамики.
1
2
2
2
Раздел 3. Электричество и
магнетизм.
Тема 3.1. Электростатика.
2
Раздел 3. Электричество и
магнетизм.
Тема 3.2. Постоянный
электрический ток.
2
Раздел 3. Электричество и
магнетизм.
Тема 3.2. Постоянный
электрический ток.
Магнитное поле тока, его индукция и Раздел 3. Электричество и
напряженность.
Принцип магнетизм.
суперпозиции магнитных полей. Тема 3.3. Магнитное поле.
Применение
закона
Био-СавараЛапласа к расчету магнитных полей.
Электромагнитная индукция. Энергия Раздел 3. Электричество и
магнитного
поля.
Магнитные магнетизм.
свойства вещества.
Тема 3.3. Магнитное поле.
Механические
гармонические Раздел 4.
колебания. Сложение гармонических Тема 4.1. Механические и
колебаний.
электромагнитные колебания.
Электромагнитные
колебания. Раздел 4.
Переменный ток.
Тема 4.1. Механические и
электромагнитные колебания.
Волновой
процесс.
Уравнение Раздел 4.
бегущей
волны.
Принцип Тема 4.2. Упругие волны.
суперпозиции. Интерференция волн.
2
2
2
2
2
2
1
2
Импульс электромагнитного поля.
III Семестр
1
Волновые и квантовые свойства Раздел 5. Элементы квантовой
света. Отражение и преломление механики.
света на плоской границе.
Тема 5.1. Элементы
геометрической оптики
2
Тонкие
линзы.
Построение Раздел 5. Элементы к5вантовой
изображений в собирающей и механики.
рассеивающей линзах.
Тема 5.1. Элементы
геометрической оптики
3
Расчет интерференционной картины Раздел 5. Элементы квантовой
от двух источников. Дифракция на механики.
решетке. Разрешающая способность Тема 5.2. Интерференция света.
спектрального прибора.
Тема 5.3. Дифракция света.
4
Поляризация света. Закон Малюса. Раздел 5. Элементы квантовой
Двойное лучепреломление.
механики.
Тема 5.4. Поляризация света.
5
Тепловое
излучение
и
его Раздел 5. Элементы квантовой
характеристики. Законы Кирхгофа, механики.
Стефана-Больцмана, Вина.
Тема 5.6. Квантовая природа
излучения.
6
Фотоэффект. Уравнение Эйнштейна. Раздел 5. Элементы квантовой
Импульс фотона. Давление света.
механики.
Тема 5.6. Квантовая природа
излучения.
7
Квантовая
механика.
Описание Раздел 5. Элементы квантовой
микрочастиц с помощью волновой механики.
функции. Уравнение Шредингера. Тема 5.7. Элементы квантовой
Туннельный эффект.
механики.
8
Атомные ядра. Дефект массы. Раздел 6. Атомная и ядерная
Энергия
связи
ядра.
Законы физика.
радиоактивного распада.
Тема 6.1. Физика атомного
ядра.
итого
2
34
10
3.3. Лабораторный практикум
Номер лаб.
работы
Наименование лабораторной
работы
I Семестр
1.1
1.2
1.3
1.4
Методы обработки результатов
Изучение зависимости пути и скорости при
равномерном и равноускоренном движении
Определение ускорения свободного падения
Изучение законов вращательного движения
Определение
скорости
полета
пули
кинематическим методом.
таблица 4
Раздел, тема
Объём
лекционного
часов
курса
офо зфо
Механика
2
2
Механика
Механика
Механика
2
2
2
2
2
1.5.
2.1
2.4.
Определение
скорости
полета
пули
баллистическим методом.
Определение коэффициента поверхностного
натяжения жидкости методом отрыва от
поверхности кольца
Определение
отношения
теплоемкостей
при
адиабатическом
расширении.
Механика
2
Молекулярная
физика
2
Термодинамика
3
Изучение
зависимости
сопротивления
проводника
от
его
длины
методом
амперметра и вольтметра
Определение сопротивления проводника при
помощи моста Уинстона.
Исследование электростатического поля.
Электрический
ток
4
Электрический
ток
Электрический
ток
Снятие
вольт-амперной
характеристики Электрический
диода.
ток
Определение элементарного заряда
Электрический
ток
Изменение коэффициента самоиндукции Электрический
емкости и проверка закона Ома для ток
переменного тока
Определение удельного заряда электрона.
Электрический
ток
2
Определение
скорости
звука
методом
резонанса.
Определение фокусного расстояния линзы
Определение радиуса кривизны линзы с
помощью колец ньютона.
Определение длины световой волны с
помощью дифракционной решетки.
Измерение длин волн спектральных линий
Изучение законов внешнего фотоэффекта.
Опытная
проверка
закона
СтефанаБольцмана.
итого
Колебания и
волны.
Оптика.
Оптика.
2
2
2
2
Оптика.
4
2
Оптика.
Квантовая опт
Квантовая
оптика.
2
2
3
2
51
18
2
II Семестр
3.1..
3.2..
3.3
3.4
3.5
3.6.
3.7
III семестр
1.9.
4.1
4.2.
4.3.
4.4
4.5
4.6
2
2
2
2
2
2
2
3
3.4. Самостоятельная работа студентов. Разделы, темы, перечень примерных
контрольных вопросов и заданий для самостоятельной работы.
Таблица 5.
Разделы и темы
рабочей
программы
самостоятельного
изучения
Перечень домашних заданий и других
вопросов для самостоятельного изучения
Объем
часов
офо
Объем
часов
зфо
Физические
основы механики
Молекулярная
физика и
термодинамика.
Электричество
Магнетизм
Колебания и
волны
Квантовая физика
1. Проработка учебного материала.
2. Решение задач и упражнений.
3. Выполнение расчетно-графического
задания по механике.
4. Подготовка к лабораторным работам
5. I (1,2,3,4,5).
Изучение материала перенесенного на
самостоятельную проработку:
«Релятивистский закон сложения
скоростей, импульс и энергия точки в
релятивистской механике. Энергия
покоя. Закон сохранения полной
энергии».
1. Проработка учебного материала.
2. Решение задач и упражнений.
3. Подготовка к лабораторной работе
II(1,4).
4. Изучение материала перенесенного на
самостоятельную проработку:
«Границы применимости второго
закона термодинамики. Представление
о термодинамике открытых систем».
1. Проработка учебного материала.
2. Решение задач и упражнений.
3. Выполнение расчетно-графического
задания по магнетизму.
4. Подготовка к лабораторным работам
III(1,2,3,4).
5. Изучение материала перенесенного на
самостоятельную проработку:
«Диэлектрик в электрическом поле.
Проводник в электростатическом
поле».
1. Проработка учебного материала.
2. Решение задач и упражнений.
3. Подготовка к лабораторной работе
III(5,6,7).
4. Изучение материала перенесенного на
самостоятельную проработку: токи при
размыкании и замыкании цепи.
Трансформаторы. Энергия магнитного
поля.
1. Проработка учебного материала.
2. Подготовка к лабораторной работе (9)
3. Изучение материала перенесенного на
самостоятельную проработку: «Цепь
переменного тока, содержащая
последовательно включенные резистор,
катушку, конденсатор. Резонанс
напряжении и токов. Мощность в цепи
переменного тока.»
1. Проработка учебного материала.
30
25
25
27
20
20
20
20
17
12
Оптика
Атомная
и
ядерная физика.
2. Подготовка к лабораторной работе
YI(1,2,3).
3. Изучение материала перенесенного на
самостоятельную проработку: «Металлы,
диэлектрики и полупроводники по зонной 20
теории. Собственная, электронная
примесная, дырочная примесная
проводимости. Контакт электронного и
дырочного полупроводника».
1. Проработка учебного материала.
2. Подготовка к лабораторной работе
YI(4,5,6).
20
3. Изучение материала перенесенного на
самостоятельную проработку: «Аберрации
оптических систем».
1. Проработка учебного материала.
2. Изучение материала перенесенного на
самостоятельную проработку: «Приборы 15
для регистрации радиоактивных излучений
и частиц».
20
20
19
3.5. Организация и методика текущего
и итогового контроля знаний
таблица 6
Перечень контрольных работ, тестов
Контрольная работа № 1
Сроки проведения
контроля
Разделы и темы
рабочей программы
Ноябрь-декабрь
механика
Зачет
1 семестр
Контрольная работа № 2
Апрель-май
Зачет
2семестр
Контрольная работа № 3
Ноябрь-декабрь
Экзамен
3семестр
Механика,
молекулярная
физика
и
термодинамика
Электричество
и
электромагнетизм
Электричество
и
электромагнетизм,
колебания и волны.
Оптика, квантовая
природа излучения.
Оптика, квантовая
природа излучения,
атомная и ядерная
физика.
3.6. Курсовая работа и учебная пратика рабочим планом не предусмотрена.
4.
Учебно-методические материалы по дисциплинам
4.1. Основная и дополнительная литература.
а) основная литература
1 ЭБС «Айбукс» Крынецкий И. Б. Общая физика: учебник/ И.Б. Крынецкий, Б.А. Струков.
— М.: ИНФРА-М, 2008. — 599 с. - Режим доступа http://ibooks.ru/
б) дополнительная литература
1. Методические указания и контрольные задания по физике : для студентов очной и
заочной формы обучения технологического, аграрного, экологического и
инженерно-экономического факультетов / [сост.: Сиюхова Д.Ю., Катбамбетова
М.А., Теучеж Г.Я., Цыбулько А.М., Зябкин М.В.]. - Майкоп : Магарин О.Г., 2008. 84 с.
2. Методическое пособие по дисциплине "Физика" : контрольные тесты для
самостоятельной работы и практических занятий студентов / [сост.: Катбамбетова
М.А. Сиюхова Д.Б., Теучеж Г.Я., Цыбулько А.М.]. - Майкоп : Магарин О.Г., 2008. 72 с.
3. Методические рекомендации и задания по физике для студентов очной и заочной
формы обучения / [сост.: Д.Б. Сиюхова и др.]. - Майкоп : Магарин О.Г., 2011. - 84
с.
4.6. Примерный перечень вопросов к экзамену (зачету) по всему курсу.
Вопросы к экзамену по физике для проведения промежуточной аттестации.
2семестр
1. Предмет физики. Методы физического исследования: опыт, гипотеза, эксперимент,
теория. Роль физики в развитии техники и её связь с другими науками. Физические
модели и их роль. Роль физики в высшем профессиональном образовании.
2. Механика и её разделы. Классическая и квантовая механика. Основы релятивистской
механики. Механическое движение. Основные физические модели: частица (материальная
точка), система частиц, абсолютно твёрдое тело, сплошная среда. Понятие состояния в
классической механике и принцип относительности в механике.
3. Система отсчёта. Скалярные и векторные физические величины. Основные
кинематические характеристики материальной точки: радиус-вектор и его проекции по
осям координат, вектор перемещения, траектория. Скорость и ускорение и их проекции по
осям координат. Кинематика и динамика твердого тела, жидкостей и газов.
4,Поступательное и вращательное движения. Твёрдое тело как система частиц.
Абсолютно твёрдое тело. Вращательное движение точки (частицы) и абсолютно твёрдого
тела вокруг неподвижной оси. Угловая скорость и угловое ускорение (средняя и
мгновенная их значения). Связь линейных и угловых параметров.
5. Скорость и ускорение частицы при криволинейном движении на примере движения
частицы по окружности с постоянной по модулю скоростью. Центростремительное
(нормальное) и тангенциальное составляющие полного ускорения. Кривизна траектории.
6. Динамика материальной точки. Масса, импульс (количество движения), сила.
Основные законы динамики (законы Ньютона). Второй закон Ньютона в
дифференциальной форме. Уравнение движения. Центр масс механической системы и
закон его движения.
7. Силы упругости и упругие деформации и напряжения в твёрдом теле. Закон Гука для
пружины и стержня. Модуль Юнга.
8. Замкнутая система тел. Внутренние и внешние силы. Консервативные и
неконсервативные силы. Законы сохранения. Закон сохранения импульса и его
применение к абсолютно упругому и неупругому удару материальных шаров.
9. Работа переменной силы и мощность. Энергия. Кинетическая энергия материальной
точки и твёрдого тела. Простые механизмы и их назначение. Коэффициент полезного
действия механизма.
10. Работа в поле силы тяжести. Потенциальная энергия и её связь с силой, действующей
на материальную точку. Полная механическая энергия системы и закон её сохранения в
замкнутых системах.
11. Вращательное движение твёрдого тела. Момент силы и вращательный момент.
Кинетическая энергия вращающегося твёрдого тела. Момент инерции материальной
частицы и твёрдого тела. Теорема Гюйгенса-Штейнера.
12. Работа, совершаемая при вращении твёрдого тела. Основное уравнение динамики
вращательного движения твёрдого тела. Момент импульса и закон сохранения момента
импульса в замкнутых системах.
13. Предмет молекулярной физики и термодинамики. Статистическая физика и
термодинамика. Основные положения молекулярно-кинетической теории газов.
Термодинамический и статистический методы. Три начала термодинамики.
14. Основное уравнение молекулярно-кинетической теории идеального газа для давления.
Кинетические явления. Элементы неравновесной термодинамики. Законы диффузии,
внутреннего трения и теплопроводности (опытные законы). Диффузия в газах.
Коэффициенты диффузии, теплопроводности и вязкости. Температуропроводность.
15. Внутренняя энергия системы. Теплообмен. Работа и количество теплоты. Первое
начало термодинамики. Работа, совершаемая термодинамической системой при
изменениях её объема.
16. Степени свободы молекул газа. Закон (теорема) Больцмана. Внутренняя энергия
идеального газа. Теплоёмкость. Зависимость теплоёмкости идеального газа от степени
свободы молекул и от вида процесса теплопередачи (изохорного, изобарного,
изотермического, адиабатного). Уравнение Майера.
17. Первый закон (первое начало) термодинамики (закон сохранения энергии в тепловых
процессах ). Применение первого начала термодинамики к изопроцессам в газах.
Адиабатический процесс. Уравнение Пуассона. Политропный процесс.
18. Обратимые и необратимые процессы. Второе начало термодинамики и его
статистическое толкование. Необратимость тепловых процессов. Преобразование энергии
в тепловых двигателях. Принцип работы тепловых двигателей и холодильных машин.
Цикл Карно и его коэффициент полезного действия.
19. Термодинамические функции состояния. Термодинамические потенциалы –
внутренняя энергия, свободная энергия Гельмгольца (изотермический потенциал),
энтальпия (теплосодержание или тепловая функция), термодинамический потенциал
Гиббса (энергия Гиббса ) и связывающие их основные соотношения.
20. Необратимость тепловых процессов. Термодинамическая вероятность и энтропия.
Неравенство Клаузиуса. Третье начало термодинамики (теорема Нернста) и следствия из
него. Понятие о динамическом хаосе. Классическая и квантовые статистики.
21.Конденсированное состояние. Фазовые равновесия и фазовые превращения
Вопросы к экзамену по физике для проведения промежуточной аттестации.
3семестр
1. Электростатика в вакууме и в веществе и её задачи. Электрический заряд. Закон
сохранения электрического заряда. Закон взаимодействия точечных зарядов (закон
Кулона). Единица заряда. Поле и вещество – две основные формы существования
материи. Электрическое поле. Напряжённость электрического поля. Суперпозиция
электростатических полей. Графическое изображение электрических полей.
2. Поток вектора напряжённости электрического поля. Теорема Остроградского-Гаусса
для электростатического поля в вакууме. Работа сил электростатического поля по
перемещению заряда. Потенциал поля. Связь между напряжённостью и потенциалом.
Циркуляция вектора напряжённости электростатического поля. Эквипотенциальные
поверхности.
3. Электрическое поле в веществе. Свободные и связанные заряды. Электрический
диполь. Типы диэлектриков и виды поляризации диэлектриков. Вектор электрического
смещения.
4. Проводники в электрическом поле. Распределение зарядов в проводниках.
Электростатическая защита. Электроёмкость уединённого и не уединённого проводника
(системы проводников). Конденсаторы. Энергия заряжённого проводника, конденсатора и
системы заряжённых частиц. Энергия электростатического поля.
5. Электродинамика и её задачи. Принцип относительности в электродинамике
Постоянный электрический ток. Сила и плотность тока. Разность потенциалов,
электродвижущая сила (ЭДС). Электрическое напряжение. Правила Кирхгофа для
электрических цепей постоянного тока и примеры их применения.
6. Законы Ома и Джоуля – Ленца. Дифференциальная форма законов Ома и ДжоуляЛенца. Закон Ома для неоднородного участка цепи. Природа электрического тока в в
металлах, жидкостях и газах. Закон Ома для электролитов. Электролиз и основные законы
электролиза (законы Фарадея).
7. Магнетостатика в вакууме и в веществе и её задачи. Относительный характер
электрического и магнитного полей. Магнитное взаимодействие токов. Вектор магнитной
индукции. Магнитное поле тока как релятивистский эффект. Магнитный момент контура
с током и его вращательный момент.
8. Закон Био-Савара-Лапласа и его применение к расчёту магнитных полей прямого
проводника и кругового контура с током. Циркуляция вектора индукции магнитного поля.
Вихревой характер магнитного поля. Закон полного тока для магнитного поля в вакууме.
9. Магнитное поле длинного соленоида. Применение соленоида в различных механизмах
и устройствах автоматизации. Действие магнитного поля на элемент тока. Закон Ампера.
Взаимодействие параллельных проводников с токами.
10. Действие магнитного поля на движущийся заряд. Сила Лоренца. Эффект Холла и его
техническое применение. Принцип действия датчиков Холла.
11. Контур с током в магнитном поле. Вращательный момент контура во внешнем
магнитном поле. Магнитный поток. Теорема Остроградского-Гаусса для магнитного поля.
Работа перемещения проводника и контура с током в магнитном поле.
22. Явление электромагнитной индукции (опыты Фарадея). Законы Фарадея и Ленца.
Объединенный (основной) закон электромагнитной индукции. Вихревое электрическое
поле.
13. Явление самоиндукции и взаимной индукции. Индуктивность контура, единица
индуктивности.
14. Электрические токи при размыкании и замыкании электрических цепей постоянного
тока. Квазистационарные токи. Вихревые токи и технические устройства, основанные на
их полезных свойствах. Индукционные печи и нагреватели.
15. Энергия магнитного поля. Объёмная плотность энергии магнитного поля.
Применение явления электромагнитной индукции в промышленности и в технике.
Возникновение индукционного тока во вращающемся контуре и его практическое
применение.
16. Магнитное поле в веществе. Задачи магнетостатики в веществе. Магнитные
характеристики вещества – вектор намагниченности, магнитная восприимчивость и
магнитная проницаемость вещества.
17. Классификация магнетиков. Закон полного тока для магнитного поля в веществе.
Вектор напряжённости магнитного поля и его циркуляция. Условия на границе раздела
двух сред.
18. Основы теории Максвелла для электромагнитного поля. Токи смещения. Уравнения
Максвелла в интегральной и в дифференциальной формах. Материальные уравнения.
Принцип относительности в электродинамике.
19. Гармонические колебания (механические и электромагнитные) и их характеристики.
Нормальные моды. Дифференциальное уравнение гармонических колебаний.
Гармонический и ангармонический осцилляторы.
20. Пружинный, математический и физический маятники. Дифференциальное уравнение
колебаний. Приведенная длина физического маятника. Колебательный контур. Энергия
механических и электромагнитных гармонических колебаний.
21. Дифференциальное уравнение затухающих механических и электромагнитных
колебаний и его решение. Логарифмический декремент затухания. Апериодический
процесс. Критическое сопротивление контура.
22. Дифференциальное уравнение вынужденных механических и электромагнитных
колебаний и его решение. Амплитуда и фаза вынужденных колебаний. Резонанс.
Вопросы к экзамену по физике для проведения промежуточной аттестации.
4семестр
1. Кинематика волновых процессов. Механизм образования волн в упругой среде.
Волновая поверхность и фронт волны. Принцип Гюйгенса. Продольные и поперечные
волны. Уравнение бегущей волны и волновое (дифференциальное) уравнение
механических волн.
2. Энергия волны. Акустические (звуковые) волны. Эффект Доплера в акустике.
Применение механических волн. Принцип суперпозиции волн и границы его
применимости. Когерентность и интерференция механических волн.
3. Электромагнитные волны. Дифференциальное (волновое) уравнение электромагнитной
волны. Основные свойства электромагнитных волн. Монохроматическая волна.
4. Энергия электромагнитных волн. Поток энергии. Вектор Умова-Пойнтинга.
Материальность электромагнитного поля. Применение электромагнитных волн в технике
и связи.
5. Природа света, геометрическая и волновая оптика. Геометрическая оптика и её законы
(законы отражения и преломления световых лучей). Явление полного внутреннего
отражения света и его техническое применение.
6. Предмет оптики. Шкала электромагнитных волн. Интерференция волн. Когерентность
и монохроматичность световых волн. Усиление и ослабление интенсивности световых
волн. Время и длина когерентности.
7. Методы наблюдения интерференции световых волн. Расчёт интерференционной
картины от двух когерентных источников для опыта Юнга. Оптическая разность хода
волн (световых лучей) и разность фаз.
8. Интерференция света в тонких плёнках (полосы равного наклона). Условия усиления и
ослабления интенсивности световых волн в тонких плёнках. Просветление оптики,
практическое применение интерференции света.
9. Интерференция в плёнках переменной толщины (полосы равной толщины). Кольца
Ньютона.
10. Интерференционные оптические приборы и волноводы. . Интерферометры и их
применение в технике и в научных исследованиях. Оптическая голография и области её
применения.
11. Дифракция волн. Принцип Гюйгенса и принцип Гюйгенса-Френеля. Метод зон
Френеля. Прямолинейность распространения света в теории Френеля. Дифракция
Френеля на круглом отверстии и диске. Разрешающая способность спектральных и
оптических приборов, обусловленная дифракцией света.
12. Дифракция света в параллельных лучах (дифракция плоских волн) от одной щели
(дифракция Фраунгофера). Дифракция света от двух и более щелей. Дифракционная
решётка.
13. Дисперсия световых волн. Области нормальной и аномальной дисперсии. Волновой
пакет. Групповая и фазовая скорости волн. Молекулярное рассеяние света. Мутные среды.
14. Физическая природа аномальной дисперсии. Классическая электронная теория
дисперсии. Принципы и физический смысл спектрального разложения световых волн.
Оптическая фильтрация. Элементы Фурье оптики.
15. Поглощение света в веществе, основные характеристики поглощения. Законы БугераЛамберта и Бэра. Спектральные оптические приборы, основанные на применении законов
поглощения света.
16. Естественный свет. Цуг волны. Поляризованный свет и его получение. Поляризация
света при отражении. Закон Брюстера. Явление двойного лучепреломления и его
физическая природа. Поляризация света при двойном лучепреломлении.
17. Исследование поляризованного света. Закон Малюса. Поляризационные приборы и их
применение. Поляроиды и поляризационные призмы.
. 18. Основные положения квантовой физики. Тепловое излучение. Абсолютно чёрное
тело. Универсальная функция Кирхгофа. Классические законы Стефана-Больцмана и
Вина, формула Рэлея-Джинса.
19. Квантовая гипотеза и формула Планка для теплового излучения. Диалектическое
единство волновых и корпускулярных свойств электромагнитного излучения. Принцип
соответствия Бора.
20. Внешний фотоэффект и его законы. Фотоны. Энергия и импульс фотона. Уравнение
Эйнштейна для внешнего фотоэффекта. Лазеры и их применение.
21. Корпускулярно-волновой дуализм. Гипотеза Луи де-Бройля и опытные обоснования
корпускулярно-волнового дуализма свойств микрочастиц. Формула де-Бройля. Принцип
неопределённости (соотношения неопределённостей Гейзенберга) как проявление
корпускулярно-волнового дуализма свойств материи. Волновая функция и её
статистический смысл. Принцип суперпозиции волновых функций.
22. Ограниченность механического (классического) детерминизма и основные положения
волновой (квантовой) механики. Общее уравнение Шредингера. Оператор физических
величин. Квантовые состояния. Частица в одномерной прямоугольной «потенциальной
яме». Принцип причинности в квантовой механике. Квантовые уравнения движения.
23. Образование молекул. Природа химической связи в молекулах. Энергетический
спектр атомов и молекул.
24. Заряд, размер и масса атомного ядра. Массовое и зарядовое числа. Состав ядра.
Дефект массы и энергия связи ядер. Природа ядерных сил. Естественная и искусственная
радиоактивность. Закон радиоактивного распада.
Дополнения и изменения в рабочей программе
за ________/________ учебный год
В рабочую программу ____________________________________________________
(наименование дисциплины)
для специальности (тей) ___________________________________________________
(номер специальности)
вносятся следующие дополнения и изменения:
Download