Uploaded by Антон Безбородов

Михайлов Векторный анализ (решебник с достаточно подробной теорией)

advertisement
ÌÈÍÈÑÒÅÐÑÒÂÎ ÎÁÐÀÇÎÂÀÍÈß
ÐÎÑÑÈÉÑÊÎÉ ÔÅÄÅÐÀÖÈÈ
ÂÎËÃÎÃÐÀÄÑÊÈÉ ÃÎÑÓÄÀÐÑÒÂÅÍÍÛÉ ÓÍÈÂÅÐÑÈÒÅÒ
ÂÎËÃÎÃÐÀÄÑÊÈÉ ÃÎÑÓÄÀÐÑÒÂÅÍÍÛÉ
ÒÅÕÍÈ×ÅÑÊÈÉ ÓÍÈÂÅÐÑÈÒÅÒ
Â.Ê. Ìèõàéëîâ, Á.Í. Ñèïëèâûé, À.Ì. Àôàíàñüåâ
ÇÀÄÀ×È
ÏÎ ÂÅÊÒÎÐÍÎÌÓ ÀÍÀËÈÇÓ
Ó÷åáíîå ïîñîáèå
Âîëãîðàä 2001
ÁÁÊ 22.151.51
Ì69
Ðåöåíçåíòû:
ä-ð ôèç.-ìàò. íàóê, ïðîô. È.Ï. Ðóäåíîê,
ä-ð ôèç.-ìàò. íàóê, ïðîô. Ñ.Â. Êðþ÷êîâ
Ïå÷àòàåòñÿ ïî ðåøåíèþ
áèáëèîòå÷íî-èçäàòåëüñêîãî ñîâåòà ÂîëÃÓ
Ì69
Ìèõàéëîâ Â.Ê. è äð.
Çàäà÷è ïî âåêòîðíîìó àíàëèçó: Ó÷åáíîå ïîñîáèå /
Â.Ê. Ìèõàéëîâ, Á.Í. Ñèïëèâûé, À.Ì. Àôàíàñüåâ. — Âîëãîãðàä:
Èçäàòåëüñòâî Âîëãîãðàäñêîãî ãîñóäàðñòâåííîãî óíèâåðñèòåòà,
2001. — 148 ñ.
ISBN 5-85534-427-4
Ïîñîáèå ñîäåðæèò íåîáõîäèìûé ìèíèìóì çàäà÷ ïî
îñíîâíûì ðàçäåëàì âåêòîðíîãî àíàëèçà â ñîîòâåòñòâèè ñ
ïðîãðàììîé äàííîãî êóðñà äëÿ ôèçè÷åñêèõ ñïåöèàëüíîñòåé âóçîâ.
 íà÷àëå êàæäîãî ðàçäåëà äàþòñÿ êðàòêèå òåîðåòè÷åñêèå
ñâåäåíèÿ è ïðèâîäÿòñÿ ïîêàçàòåëüíûå ðåøåíèÿ íåñêîëüêèõ
õàðàêòåðíûõ çàäà÷. Áîëüøèíñòâî çàäà÷ ñáîðíèêà ÿâëÿþòñÿ
òèïîâûìè è ÷èñòî ìàòåìàòè÷åñêèìè, èìåþùèìè öåëüþ îòðàáîòêó
òåõíèêè ïðèìåíåíèÿ àïïàðàòà âåêòîðíîãî àíàëèçà. Îäíàêî
çíà÷èòåëüíîå ìåñòî óäåëåíî è ïðèêëàäíûì çàäà÷àì ôèçèêè. Â
êîíöå çàäà÷ííêà ñîäåðæàòñÿ îòâåòû íà ïðåäëàãàåìûå çàäà÷è.
Ïðåäíàçíà÷åí äëÿ ñòóäåíòîâ ìëàäøèõ êóðñîâ ôèçè÷åñêèõ è
ôèçèêî-ìàòåìàòè÷åñêèõ ñïåöèàëüíîñòåé âóçîâ.
ISBN 5-85534-427-4
© Â.Ê. Ìèõàéëîâ, Á.Í. Ñèïëèâûé,
À.Ì. Àôàíàñüåâ, 2001
© Èçäàòåëüñòâî Âîëãîãðàäñêîãî
ãîñóäàðñòâåííîãî óíèâåðñèòåòà, 2001
© Âîëãîãðàäñêèé ãîñóäàðñòâåííûé
òåõíè÷åñêèé óíèâåðñèòåò, 2001
Ñîäåðæàíèå
ÏÐÅÄÈÑËÎÂÈÅ ............................................................. 5
ÎÁÎÇÍÀ×ÅÍÈß ............................................................. 6
1. ÑÊÀËßÐÍÎÅ ÏÎËÅ .................................................... 8
1.1. Ïîâåðõíîñòè óðîâíÿ, ëèíèè óðîâíÿ ................ 8
1.2. Ïðîèçâîäíàÿ ïî íàïðàâëåíèþ ....................... 12
1.3. Ãðàäèåíò .......................................................... 16
2. ÂÅÊÒÎÐÍÎÅ ÏÎËÅ .................................................. 23
2.1. Âåêòîðíûå ëèíèè ............................................ 23
2.2. Ïîòîê .............................................................. 28
2.3. Äèâåðãåíöèÿ ................................................... 33
2.4. Òåîðåìà Îñòðîãðàäñêîãî ................................. 36
2.5. Ðàáîòà .............................................................. 42
2.6. Ðîòîð. Ïðàâèëà ðàáîòû ñ îïåðàòîðîì ∇ ........... 51
2.7. Òåîðåìà Ñòîêñà. Ôîðìóëà Ãðèíà .................... 57
3. ÒÈÏÛ ÂÅÊÒÎÐÍÛÕ ÏÎËÅÉ ................................. 63
3.1. Ïîòåíöèàëüíîå ïîëå.
Ñêàëÿðíûé ïîòåíöèàë .................................... 63
3.2. Ñîëåíîèäàëüíîå ïîëå.
Âåêòîðíûé ïîòåíöèàë ..................................... 71
3.3. Ëàïëàñîâî ïîëå. Ãàðìîíè÷åñêèå ôóíêöèè ..... 80
4. ÊÐÈÂÎËÈÍÅÉÍÛÅ ÎÐÒÎÃÎÍÀËÜÍÛÅ
ÊÎÎÐÄÈÍÀÒÛ ......................................................... 84
4.1. Ïîíÿòèå î êðèâîëèíåéíûõ êîîðäèíàòàõ ....... 84
4.2. Ïðåîáðàçîâàíèÿ áàçèñà ................................... 88
4.3. Îïåðàöèè âåêòîðíîãî àíàëèçà
â êðèâîëèíåéíûõ êîîðäèíàòàõ ...................... 90
4.3.1.Óðàâíåíèÿ âåêòîðíûõ ëèíèé ................ 90
4.3.2. Ãðàäèåíò ................................................ 91
4.3.3. Äèâåðãåíöèÿ .......................................... 92
4.3.4. Ðîòîð ..................................................... 92
4.3.5. Âû÷èñëåíèå ïîòîêà ............................... 94
4.3.6. Âû÷èñëåíèå ðàáîòû ................................. 9
4.3.7. Âû÷èñëåíèå ñêàëÿðíîãî ïîòåíöèàëà .... 99
4.3.8. Ïîñòðîåíèå âåêòîðíîãî ïîòåíöèàëà ... 104
4.3.9. Îïåðàòîð Ëàïëàñà ................................ 107
5. ÒÅÍÇÎÐÛ ................................................................. 111
5.1. Ïðåîáðàçîâàíèÿ áàçèñà.
Îïðåäåëåíèå òåíçîðà. Ñèììåòðèÿ òåíçîðà ... 111
5.2. Ãëàâíûå îñè òåíçîðà ..................................... 115
5.3. Òåíçîðû â ôèçèêå ........................................ 120
5.4. Ïðîñòåéøèå îïåðàöèè ñ òåíçîðàìè ............. 121
ÑÏÈÑÎÊ ËÈÒÅÐÀÒÓÐÛ .......................................... 146
4
ÏÐÅÄÈÑËÎÂÈÅ
Ïðåäëàãàåìîå ó÷åáíîå ïîñîáèå ñîäåðæèò íåîáõîäèìûé ìèíèìóì çàäà÷ â îáúåìå ïðîãðàììû ïî âåêòîðíîìó àíàëèçó äëÿ
ñòóäåíòîâ ôèçè÷åñêèõ ñïåöèàëüíîñòåé âóçîâ.
 íà÷àëå êàæäîãî ðàçäåëà äàþòñÿ êðàòêèå òåîðåòè÷åñêèå ñâåäåíèÿ áåç äîêàçàòåëüñòâà, ò. å. îñíîâíûå ïîíÿòèÿ, îïðåäåëåíèÿ,
ôîðìóëû, à òàêæå ïðèâîäÿòñÿ ïîêàçàòåëüíûå ðåøåíèÿ íåñêîëüêèõ õàðàêòåðíûõ çàäà÷. Ýòî ïîçâîëÿåò ñòóäåíòó îâëàäåòü òåõíèêîé è êóëüòóðîé ðåøåíèÿ çàäà÷ ñàìîñòîÿòåëüíî èëè ïðè ìèíèìàëüíîé ïîìîùè ïðåïîäàâàòåëÿ.
Áîëüøèíñòâî çàäà÷ ïîñîáèÿ ÿâëÿþòñÿ òèïîâûìè è ÷èñòî
ìàòåìàòè÷åñêèìè. Îíè èìåþò öåëüþ ïðàêòè÷åñêîå îñâîåíèå àïïàðàòà âåêòîðíîãî àíàëèçà, äëÿ èõ ðåøåíèÿ íå òðåáóåòñÿ îñîáîãî
èñêóññòâà, õîòÿ ìíîãèå èç íèõ äîñòàòî÷íî òðóäíû. Íî çíà÷èòåëüíîå âíèìàíèå óäåëåíî è çàäà÷àì ïðèêëàäíîãî õàðàêòåðà èç ìåõàíèêè è ýëåêòðîäèíàìèêè, ðåøåíèå êîòîðûõ, îäíàêî, íå òðåáóåò
ñïåöèàëüíûõ äîïîëíèòåëüíûõ ñâåäåíèé èç ñîîòâåòñòâóþùèõ äèñöèïëèí. Îñîáåííîñòüþ òàêèõ çàäà÷ ÿâëÿåòñÿ ëèøü òî, ÷òî â íèõ
ìåòîäàìè âåêòîðíîãî àíàëèçà èññëåäóþòñÿ ñâîéñòâà íå èñêóññòâåííî ñêîíñòðóèðîâàííûõ, à êîíêðåòíûõ ôèçè÷åñêèõ ïîëåé.
 çàêëþ÷èòåëüíîì ðàçäåëå ïîñîáèÿ ïðåäëàãàåòñÿ íåñêîëüêî
çàäà÷ íà îñíîâíûå ñâîéñòâà òåíçîðîâ è ïðîñòåéøèå îïåðàöèè ñ
íèìè â ïðÿìîóãîëüíûõ äåêàðòîâûõ êîîðäèíàòàõ.
 êîíöå ñáîðíèêà äàþòñÿ êðàòêèå îòâåòû ïî÷òè íà âñå ïðåäëàãàåìûå çàäà÷è, êðîìå òåõ íåìíîãèõ, êîòîðûå ñâÿçàíû ñ êàêèì-ëèáî äîêàçàòåëüñòâîì. Èíîãäà âìåñòî îòâåòà èëè â äîáàâëåíèå ê íåìó äàåòñÿ ìåòîäè÷åñêàÿ ðåêîìåíäàöèÿ â ôîðìå ëåãêîé
ïîäñêàçêè, ïîìîãàþùåé ïîäñòóïèòüñÿ ê äàííîé çàäà÷å.
Ïðè ñîñòàâëåíèè íàñòîÿùåãî ñáîðíèêà çàäà÷ èñïîëüçîâàëèñü èñòî÷íèêè [3—8], ñòàâøèå áèáëèîãðàôè÷åñêîé ðåäêîñòüþ.
Ìíîãèå çàäà÷è ÿâëÿþòñÿ îðèãèíàëüíûìè ïî ñîäåðæàíèþ èëè ïî
ïîñòàíîâêå.
Ó÷åáíîå ïîñîáèå ðàññ÷èòàíî íà ñòóäåíòîâ ìëàäøèõ êóðñîâ
ôèçè÷åñêèõ ñïåöèàëüíîñòåé âóçîâ è ïðåäïîëàãàåò èõ çíàêîìñòâî
ñ àíàëèòè÷åñêîé ãåîìåòðèåé, âåêòîðíîé àëãåáðîé è îñíîâàìè
ìàòåìàòè÷åñêîãî àíàëèçà.
5
ÎÁÎÇÍÀ×ÅÍÈß
 ñáîðíèêå çàäà÷ èñïîëüçóåòñÿ ñëåäóþùàÿ îáùåïðèíÿòàÿ (èëè
áëèçêàÿ ê îáùåïðèíÿòîé) ñèìâîëèêà:
ρ ρ ρ
e x , e y , e z — áàçèñíûå îðòû äåêàðòîâîé ñèñòåìû êîîðäèíàò;
ρ
en — åäèíè÷íàÿ íîðìàëü;
ρ
eτ — åäèíè÷íûé êàñàòåëüíûé âåêòîð;
ρ ρ
a ⋅ b — ñêàëÿðíîå ïðîèçâåäåíèå äâóõ âåêòîðîâ;
ρ ρ
a × b — âåêòîðíîå ïðîèçâåäåíèå äâóõ âåêòîðîâ;
ρρρ
( abc ) — ñìåøàííîå ïðîèçâåäåíèå òðåõ âåêòîðîâ;
ρ ρ
dl = eτ dl — îðèåíòèðîâàííûé ýëåìåíò êðèâîé;
ρ ρ
dS = en dS — îðèåíòèðîâàííûé ýëåìåíò ïîâåðõíîñòè;
u( x , y, z ) — ñêàëÿðíîå ïîëå îáùåãî âèäà â äåêàðòîâîé
ñèñòåìå;
ρ
a ( x, y , z ) — âåêòîðíîå ïîëå îáùåãî âèäà â äåêàðòîâîé
ñèñòåìå;
ρ
ρ
a = {a x , a y , a z } — âåêòîðíîå ïîëå a ( x , y, z ) , çàäàâàåìîå åãî
êîìïîíåíòàìè a x ( x , y, z ) , a y ( x , y , z ) ,
ρ
ρ
ρ
ρ
a z ( x , y, z ) , ò. å. a = a x e x + a y e y + a z e z ;
ρ
r = {x , y, z} — ðàäèóñ-âåêòîð, çàäàâàåìûé åãî êîìïîíåíòàìè
ρ
ρ
ρ
ρ
x, y, z, ò. å. r = {x , y , z} = xe x + ye y + ze z ;
ρ
r= r =
x2 + y2 + z2
— ðàññòîÿíèå îò òî÷êè Ì (x, y, z) äî íà÷àëà
êîîðäèíàò;
ρ = x2 + y2
— ðàññòîÿíèå îò òî÷êè Ì (x, y, z) äî îñè z;
(q1, q2, q3) — îáîáùåííûå êðèâîëèíåéíûå êîîðäèíàòû;
(ρ, ϕ, z) — öèëèíäðè÷åñêèå êîîðäèíàòû;
(ρ, θ, ϕ) — ñôåðè÷åñêèå êîîðäèíàòû;
6
ρ ρ ρ
eρ , eϕ , e z — îðòîãîíàëüíûé áàçèñ öèëèíäðè÷åñêîé ñèñòåìû êîîðäèíàò;
ρ ρ ρ
er , eθ , eϕ — îðòîãîíàëüíûé áàçèñ ñôåðè÷åñêîé ñèñòåìû
êîîðäèíàò;
∇ — îïåðàòîð Ãàìèëüòîíà (îïåðàòîð íàáëà);
∆ — îïåðàòîð Ëàïëàñà (îïåðàòîð äåëüòà);
∇u — êðàòêîå îáîçíà÷åíèå îïåðàöèè grad u;
ρ
ρ
∇ ⋅ a — êðàòêîå îáîçíà÷åíèå îïåðàöèè div a ;
ρ
ρ
∇ × a — êðàòêîå îáîçíà÷åíèå îïåðàöèè rot a .
Äðóãèå èñïîëüçóåìûå â çàäà÷àõ ñèìâîëû îïèñàíû â íà÷àëå
ñîîòâåòñòâóþùåãî ðàçäåëà èëè ïðè ôîðìóëèðîâêå çàäà÷è.
7
1. ÑÊÀËßÐÍÎÅ ÏÎËÅ
Îïðåäåëåíèå. Åñëè â êàæäîé òî÷êå M (x, y, z) íåêîòîðîé îáëàñòè
ïðîñòðàíñòâà V îïðåäåëåíî çíà÷åíèå ñêàëÿðíîé ôóíêöèè u = u (M), òî ãîâîðÿò, ÷òî â ýòîé îáëàñòè çàäàíî ñêàëÿðíîå ïîëå u (x, y, z). Ïðè ýòîì ïðåäïîëàãàåòñÿ,
÷òî ôóíêöèÿ u îäíîçíà÷íà è ïðèíèìàåò â îáëàñòè V
êîíå÷íûå äåéñòâèòåëüíûå çíà÷åíèÿ.
Ïðèìåðû ôèçè÷åñêèõ ñêàëÿðíûõ ïîëåé:
T = T (x, y, z) —
ïîëå òåìïåðàòóð;
p = p (x, y, z) —
ïîëå äàâëåíèé;
ρ = ρ (x, y, z) —
ïîëå ïëîòíîñòåé ñðåäû;
ϕ = ϕ (x, y, z) —
ðàñïðåäåëåíèå ïîòåíöèàëà
ýëåêòðîñòàòè÷åñêîãî ïîëÿ.
Îïðåäåëåíèå. Ñêàëÿðíîå ïîëå u íàçûâàåòñÿ ñòàöèîíàðíûì, åñëè
îíî íå çàâèñèò îò âðåìåíè. Åñëè æå u = u (x, y, z, t), òî
ïîëå íàçûâàåòñÿ íåñòàöèîíàðíûì. Äàëåå, åñëè íå áóäåò ñïåöèàëüíûõ îãîâîðîê, ðàññìàòðèâàþòñÿ òîëüêî
ñòàöèîíàðíûå ïîëÿ.
Îïðåäåëåíèå. Ñêàëÿðíîå ïîëå íàçûâàåòñÿ ïëîñêèì, åñëè ôóíêöèÿ
u çàâèñèò òîëüêî îò äâóõ êîîðäèíàò, íàïðèìåð
u = u (x, y).
1.1. Ïîâåðõíîñòè óðîâíÿ, ëèíèè óðîâíÿ
Ãåîìåòðè÷åñêèì ïðåäñòàâëåíèåì ñêàëÿðíîãî ïîëÿ u (x, y, z)
ñëóæàò ïîâåðõíîñòè óðîâíÿ.
Îïðåäåëåíèå. Ïîâåðõíîñòü óðîâíÿ ñêàëÿðíîãî ïîëÿ u — ýòî ãåîìåòðè÷åñêîå ìåñòî òî÷åê, ãäå ôóíêöèÿ u èìååò êàêîå-ëèáî ïîñòîÿííîå çíà÷åíèå. Òàêèì îáðàçîì, ïîâåðõíîñòü óðîâíÿ çàäàåòñÿ óðàâíåíèåì
u (x, y, z) = C, ãäå C = const.
Ýòî óðàâíåíèå îïðåäåëÿåò íåêîòîðóþ ïîâåðõíîñòü â ïðîñòðàíñòâå. Ïðèäàâàÿ âåëè÷èíå C çíà÷åíèÿ C1, C2, ... CN, ïîëó÷àåì
ñåìåéñòâî ïîâåðõíîñòåé óðîâíÿ â ïðîñòðàíñòâå.
Ïðèìåðû ïîâåðõíîñòåé óðîâíÿ:
1) ñåìåéñòâîì ïîâåðõíîñòåé óðîâíÿ ïîòåíöèàëà ïîëÿ òî÷å÷íîãî çàðÿäà (ýêâèïîòåíöèàëüíûìè ïîâåðõíîñòÿìè) ÿâëÿþòñÿ êîíöåíòðè÷åñêèå ñôåðû, îáùèé öåíòð êîòîðûõ ñîâïàäàåò ñ çàðÿäîì;
8
2) ñåìåéñòâîì ïîâåðõíîñòåé óðîâíÿ ïîëÿ òåìïåðàòóð ïðÿìîé äëèííîé ðàâíîìåðíî íàãðåòîé íèòè (ýêâèòåìïåðàòóðíûìè
ïîâåðõíîñòÿìè) áóäóò êðóãîâûå êîàêñèàëüíûå öèëèíäðû, îáùàÿ îñü êîòîðûõ ñîâïàäàåò ñ íèòüþ.
Òàê êàê ôóíêöèÿ u (x, y, z) ïðåäïîëàãàåòñÿ îäíîçíà÷íîé, òî
÷åðåç êàæäóþ òî÷êó ïðîñòðàíñòâà ïðîõîäèò òîëüêî îäíà ïîâåðõíîñòü óðîâíÿ, ò. å. ïîâåðõíîñòè óðîâíÿ íå ïåðåñåêàþòñÿ.
Åñëè ñêàëÿðíîå ïîëå ÿâëÿåòñÿ ïëîñêèì, ò. å., íàïðèìåð,
u = u (x, y), òî åãî ãåîìåòðè÷åñêèì ïðåäñòàâëåíèåì áóäóò ëèíèè
óðîâíÿ — ãåîìåòðè÷åñêèå ìåñòà òî÷åê íà ïëîñêîñòè xOy, ãäå
u (x, y) = C.
Ïðèìåð 1. Îïðåäåëèòü ïîâåðõíîñòè óðîâíÿ ñêàëÿðíîãî ïîëÿ
u = x2 + y2 + z2 .
Ðåøåíèå. Ïîâåðõíîñòè óðîâíÿ îïèñûâàþòñÿ óðàâíåíèåì
x2 + y2 + z2 = C ,
êîòîðîå ïðåäñòàâëÿåò ñåìåéñòâî ñôåð x2 + y2 + z2 = C2 (C = R1, R2, ...
— ðàäèóñû ñôåð).
Ïðèìåð 2. Îïðåäåëèòü ïîâåðõíîñòè óðîâíÿ ñêàëÿðíîãî ïîëÿ
ρ
ρ
ρ ρ
u = a ⋅ r , ãäå a = {a1 , a 2 , a3} — ïîñòîÿííûé âåêòîð, r = {x, y, z}
— ðàäèóñ-âåêòîð.
Ðåøåíèå. Óðàâíåíèå îäíîé èç ïîâåðõíîñòåé óðîâíÿ çäåñü èìååò
âèä:
ρ ρ
a ⋅ r = C,
èëè:
a1x + a2y + a3z = C.
Ïîëàãàÿ Ñ = Ñ1, Ñ2, ... , ïîëó÷àåì ñåìåéñòâî ïàðàëëåëüíûõ ïëîñêîñòåé.
Ïðèìåð 3. Óêàçàòü îáëàñòü îïðåäåëåíèÿ è íàéòè ïîâåðõíîñòè óðîâíÿ ñêàëÿðíîãî ïîëÿ u = z / (x2 + y2).
Ðåøåíèå. Äàííîå ïîëå îïðåäåëåíî âñþäó, êðîìå îñè z, ò. å.
êðîìå òî÷åê x = y = 0. Ïîëàãàÿ u = C, ïîëó÷èì óðàâíåíèå ïàðàáîëîèäà âðàùåíèÿ âîêðóã îñè z ñ âåðøèíîé â íà÷àëå êîîðäèíàò:
z = C (x2+ y2), C = C1, C2, ...
9
Ïðè C > 0 èìååì ñåìåéñòâî ïàðàáîëîèäîâ, íàïðàâëåííûõ â ñòîðîíó z > 0, à ïðè C < 0 — â ñòîðîíó z < 0. Ïðè Ñ = 0 ïîëó÷àåì
z = 0 — ýòî ïëîñêîñòü x0y.
Ïðèìåð 4. Èçîáðàçèòü ñåìåéñòâî ëèíèé óðîâíÿ
ñêàëÿðíîãî ïîëÿ
u=
x2 + y2
.
2( x + y )
Ðåøåíèå. Ëèíèÿ óðîâíÿ äàííîãî ïîëÿ îïèñûâàåòñÿ
óðàâíåíèåì:
x2 + y2
= C,
2( x + y )
êîòîðîå ïðèâîäèòñÿ ê âèäó:
(x — C)2 + (y — C)2 = 2C 2.
Ïîëàãàÿ Ñ = Ñ1, Ñ2, ..., ïîëó÷àåì ñåìåéñòâî îêðóæíîñòåé, ïðîõîäÿùèõ ÷åðåç òî÷êó (0, 0), â êîòîðîé ñàìî ïîëå u íå îïðåäåëåíî.
Öåíòðû îêðóæíîñòåé ëåæàò íà áèññåêòðèñå ïðÿìîãî óãëà x0y (ðèñ. 1):
ïðè C > 0 — â ïåðâîì êâàäðàíòå, ïðè C < 0 — â òðåòüåì.
Ðèñ. 1
Çàäà÷è
• Íàéòè ïîâåðõíîñòè óðîâíÿ ñëåäóþùèõ ñêàëÿðíûõ ïîëåé:
1.1. u =
1
;
2
x + y2 + z2
1.2.
10
u=
x2 + y2
;
z
1.3. u = x2 + y2 — z2;
1.6.
2
2
1.4. u = 4 y + 9 z ;
ρ
ρρρ
ρ
u = ( a , b , r ) , ãäå a è b
— ïîñòîÿííûå âåêòîðû;
1.5. u = ln r ;
1.7.
1.8.
u = xy/z;
ρ ρ
ex ⋅ r
u = ρ ρ.
ey ⋅ r
• Èçîáðàçèòü ñåìåéñòâà ëèíèé óðîâíÿ ñëåäóþùèõ ñêàëÿðíûõ ïîëåé:
1.13. u =
1.9. u = 2x — y;
x2 + y2
.
2x
1.10.
u=
1.11.
u = y2 x ;
1.15. u =
1.12.
u = x2 − y2 ;
1.16. u = ln x 2 − y 2 4 ;
y x;
1.17. u = arctg
(
1.14. u = x2 + 9y2 — 18y;
2x − y + 1
;
x2
(
)
)
x 2 + y 2 + ( x − 1)2 + y 2 .
• Ñîñòàâèòü óðàâíåíèå è ïîñòðîèòü ãðàôèê ëèíèè óðîâíÿ,
ïðîõîäÿùåé ÷åðåç òî÷êó M äëÿ ñëåäóþùèõ ñêàëÿðíûõ ïîëåé:
1.18. u = x 2 + y 2 + 2 , M (3, 5);
1.19. u = 4 x 2 − y 2 , M (2, -1);
1.20. u = 4 x 2 − y 2 , M (1, 2);
1.21. u = x 2 + 9 y 2 − 18 y , M (3, -1);
1.22. u = ( 4 x + y − 1) x 2 , M (4, 1);
2
2
1.23. u = ( x + y ) x , M (4, 0).
1.24. Ïîêàçàòü, ÷òî ïîâåðõíîñòÿìè óðîâíÿ ñêàëÿðíîãî ïîëÿ
ρ
ρ
ρ ρ ρ
u = ( a × r ) ⋅ b , ãäå a è b — ïîñòîÿííûå âåêòîðû,
ÿâëÿþòñÿ ïëîñêîñòè, ïåðïåíäèêóëÿðíûå âåêòîðó
ρ ρ
a×b .
11
1.25. Ïóñòü r1 è r2 — ðàññòîÿíèÿ îò ïåðåìåííîé òî÷êè äî
äâóõ ôèêñèðîâàííûõ òî÷åê M1 (-C, 0) è M2 (C, 0), à
u = r1r2 — ñêàëÿðíîå ïîëå (ëèíèè óðîâíÿ ýòîãî ïîëÿ
íàçûâàþòñÿ îâàëàìè Êàññèíè). Íàéòè óðàâíåíèå ëèíèè óðîâíÿ, ïðîõîäÿùåé ÷åðåç íà÷àëî êîîðäèíàò (ýòà
êðèâàÿ èìååò ñïåöèàëüíîå íàçâàíèå — ëåìíèñêàòà).
1.26. Ïóñòü Ì1 è Ì2 — ôèêñèðîâàííûå òî÷êè, Ì — ïåðåìåííàÿ òî÷êà, α1 è α2 — óãëû, êîòîðûå ñîñòàâëÿþò
ρ
ρ
ρ
âåêòîðû rM M è rM M ñ âåêòîðîì rM M 2 . Ïîñòðîèòü
1
1
2
ëèíèè óðîâíÿ ñêàëÿðíîãî ïîëÿ u = α1 — α2.
Ïðèìå÷àíèå. Óãëîì ìåæäó äâóìÿ âåêòîðàìè, ïðèâåäåííûìè ê îáùåìó íà÷àëó, íàçûâàþò òîò èç äâóõ
îáðàçîâàííûõ èìè óãëîâ, êîòîðûé íå ïðåâîñõîäèò π .
1.2. Ïðîèçâîäíàÿ ïî íàïðàâëåíèþ
Ïóñòü çàäàíî ñêàëÿðíîå ïîëå u = u (x, y, z). Îòìåòèì â ýòîì
ïîëå êàêóþ-ëèáî òî÷êó Ì è ïðîâåäåì ÷åðåç íåå îðèåíòèðîâàííóþ ïðÿìóþ l, çàäàâàåìóþ åäèíè÷íûì âåêòîðîì
ρ
l = {l x , l y , l z } .
È ïóñòü Ì´ — ïðîèçâîëüíàÿ òî÷êà íà ïðÿìîé l, ñìåùåííàÿ âäîëü
âåêòîðà
íèå:
ρ
l îòíîñèòåëüíî èñõîäíîé òî÷êè Ì. Ñîñòàâèì îòíîøåu( M ′ ) − u( M )
,
MM ′
(1.1)
ρ
ãäå ÌÌ´ — âåëè÷èíà ñìåùåíèÿ âäîëü âåêòîðà l .
Îïðåäåëåíèå. Ïðåäåë îòíîøåíèÿ (1.1), åñëè îí ñóùåñòâóåò, êîãäà
òî÷êà Ì´ ïðèáëèæàåòñÿ ê òî÷êå Ì ïî ïðÿìîé l, íàçûâàåòñÿ ïðîèçâîäíîé ñêàëÿðíîãî ïîëÿ u â òî÷êå Ì ïî
ρ
íàïðàâëåíèþ l è îáîçíà÷àåòñÿ äu /ä lM :
∂ u
∂l
= lim
M
M ′→ M
u( M ′ ) − u( M )
.
MM ′
12
(1.2)
Ýòà ïðîèçâîäíàÿ îïðåäåëÿåò «ñêîðîñòü» èçìåíåíèÿ ñêàëÿðíîãî
ρ
ïîëÿ u â òî÷êå Ì ïî íàïðàâëåíèþ l . Ïðîèçâîäíàÿ (1.2) åñòü
ñêàëÿð, òàê êàê îíà ÿâëÿåòñÿ ïðåäåëîì ñêàëÿðíîé âåëè÷èíû.
Âûðàæåíèå (1.2) ìîæíî ïðèâåñòè ê âèäó, óäîáíîìó äëÿ
ïðàêòè÷åñêèõ âû÷èñëåíèé. Ðàññìàòðèâàÿ ∂u/∂l êàê ïðîèçâîäíóþ
ñëîæíîé ôóíêöèè, çàïèøåì:
∂ u ∂ u dx ∂ u dy ∂ u dz
=
+
+
∂ l ∂ x dl ∂ y dl ∂ z dl .
À òàê êàê
dx
dy
dz
= cos α = l x ,
= cos β = l y ,
= cos γ = l z ,
dl
dl
dl
ρ
ãäå α, β è γ — íàïðàâëÿþùèå óãëû åäèíè÷íîãî âåêòîðà l , òî
∂ u ∂ u
∂ u
∂ u
=
l
lx +
ly +
∂l ∂x
∂ y
∂ z z,
(1.3)
∂ u ∂ u
∂ u
∂ u
=
cos α +
cos β +
cos γ .
∂l ∂x
∂ y
∂z
(1.4)
èëè:
Âñå ïðîèçâîäíûå ñêàëÿðíîãî ïîëÿ u (x, y, z) áåðóòñÿ â òî÷êå Ì.
Ïðèìåð 1. Âû÷èñëèòü ïðîèçâîäíóþ ñêàëÿðíîãî ïîëÿ
x y
– â òî÷êå Ì (1, 1) ïî íàïðàâëåíèþ ê òî÷êå Ì´(4, 5).
y x
ρ
Ðåøåíèå. Åäèíè÷íûé âåêòîð íàïðàâëåíèÿ l íàõîäèì íîðρ
ìèðîâêîé âåêòîðà rMM ′ = {3, 4}:
u=
ρ rρ
3 4 
l = ρMM ′ =  , 
rMM ′  5 5  .
Ïðîèçâîäíûå â òî÷êå Ì (1, 1):
∂ u 1
y
= +
∂ x y x2
= 2,
(1,1)
∂ u
x 1
=− 2 −
= −2 .
∂ y
y
x (1,1)
13
Ïîäñòàâëÿÿ ïîëó÷åííûå çíà÷åíèÿ â ôîðìóëó (1.3), ïîëó÷àåì:
3
4
2
∂ u
= 2⋅ − 2⋅ = − .
5
5
5
∂l
Òî, ÷òî ∂u/∂l M < 0, îçíà÷àåò, ÷òî ñêàëÿðíîå ïîëå u â òî÷êå Ì
óáûâàåò â äàííîì íàïðàâëåíèè.
Ïðèìåð 2. Âû÷èñëèòü ïðîèçâîäíóþ ñêàëÿðíîãî ïîëÿ
u = arctg (xy) â òî÷êå Ì (1, 1), ïðèíàäëåæàùåé ïàðàáîëå y = x2, â
íàïðàâëåíèè åå êàñàòåëüíîé â ýòîé òî÷êå â ñòîðîíó ðîñòà ôóíêöèè y.
Ðåøåíèå. Ñíà÷àëà íàõîäèì íàïðàâëÿþùèå êîñèíóñû âåêòîρ
ðà l â òî÷êå Ì. Òàê êàê òàíãåíñ óãëà ìåæäó êàñàòåëüíîé ê
ïàðàáîëå è îñüþ x :
tg α =
òî cos α = 1
êå Ì :
dy
= 2 x x =1 = 2 ,
dx
5 , cos β = sin α = 2
∂ u
y
=
∂ x 1 + x2 y2
=
(1,1)
5 . Ïðîèçâîäíûå ïîëÿ u â òî÷-
∂ u
x
=
∂ y 1 + x2 y2
1
2,
=
(1,1)
1
2.
Ïîäñòàâëÿÿ ïîëó÷åííûå âûðàæåííèÿ â ôîðìóëó (1.4), ïîëó÷àåì:
∂ u 1 1 1 2
3 5
= ⋅
+ ⋅
=
∂l 2 5 2 5
10 .
Çàäà÷è
• Âû÷èñëèòü ïðîèçâîäíûå â òî÷êå Ì ïî íàïðàâëåíèþ ê
òî÷êå Ì´ ñëåäóþùèõ ñêàëÿðíûõ ïîëåé:
1.27. u = x2y + xz2,
M (1, 5, 0), M´(4, 5, 4);
1.28. u = x + y + z , M (1, 1, 1), M´(3, 2, 1);
2
1.29. u = xy2z ,
2
2
M (5, 1, 2), M´(9, 4, 14);
14
1.30. u =
xy + x + 9
,
5x
1.31. u = 1 r,
M(3, 1), M´(7, 4);
M ( 2 , 0, 0), M´(0, 1, 1);
1.32. u = xe + ye − z 2 , M (3, 0, 2), M´(4, 1, 3);
y
x
1.33. u = ( x 2 + y 2 ) x , M (1, 0), M´(0,5; 0,5).
1.34. Âû÷èñëèòü ïðîèçâîäíóþ ñêàëÿðíîãî ïîëÿ
u = ln (ex + ey) â íà÷àëå êîîðäèíàò ïî íàïðàâëåíèþ
ëó÷à, ñîñòàâëÿþùåãî óãîë 60° ñ îñüþ àáñöèññ.
1.35. Âû÷èñëèòü ïðîèçâîäíóþ ñêàëÿðíîãî ïîëÿ u = arctg (y/x)
â òî÷êå Ì (2, -2) îêðóæíîñòè x 2 + y 2 — 4x = 0 âäîëü
åå êàñàòåëüíîé â ýòîé òî÷êå â íàïðàâëåíèè âîçðàñòàíèÿ àáñöèññû.
1.36. Âû÷èñëèòü ïðîèçâîäíóþ ñêàëÿðíîãî ïîëÿ
u = ln (x 2 + y 2) â òî÷êå Ì (1, 2) ïàðàáîëû y 2 = 4x âäîëü
åå êàñàòåëüíîé â ýòîé òî÷êå â íàïðàâëåíèè âîçðàñòàíèÿ àáñöèññû.
1.37. Âû÷èñëèòü ïðîèçâîäíóþ ñêàëÿðíîãî ïîëÿ u = arctg(xy)
â òî÷êå Ì (3, -3) ïî íàïðàâëåíèþ ê íà÷àëó êîîðäèíàò.
1.38. Ïîêàçàòü, ÷òî ïðîèçâîäíàÿ ñêàëÿðíîãî ïîëÿ
u = x2/a2+y2/b2+z2/c2 â ëþáîé òî÷êå Ì ïî íàïðàâëå-
ρ
íèþ ðàäèóñà-âåêòîðà r ýòîé òî÷êè ðàâíà 2u/r.
1.39. Âû÷èñëèòü ïðîèçâîäíóþ ñêàëÿðíîãî ïîëÿ
u = x2/4 + y2/9 + z2 â òî÷êå Ì (1, -2, 3) ïî íàïðàâëå-
ρ
íèþ ðàäèóñà-âåêòîðà r ýòîé òî÷êè.
1.40. Âû÷èñëèòü ïðîèçâîäíóþ ñêàëÿðíîãî ïîëÿ u = 1/r
ρ
ïî íàïðàâëåíèþ, çàäàííîìó åäèíè÷íûì âåêòîðîì l .
1.41. Âû÷èñëèòü ïðîèçâîäíóþ ñôåðè÷åñêîãî ñêàëÿðíîãî
ïîëÿ u(r) ïî íàïðàâëåíèþ, çàäàííîìó åäèíè÷íûì
ρ
âåêòîðîì l .
1.42. Âû÷èñëèòü ïðîèçâîäíóþ ñêàëÿðíîãî ïîëÿ
u = (x 2 + y 2) 2 â òî÷êå Ì (1, -2, 0) ïî íàïðàâëåíèþ ðàäèóñà-âåêòîðà
ρ
r ýòîé òî÷êè.
15
1.3. Ãðàäèåíò
Îïðåäåëåíèå. Âåêòîð, èìåþùèé â äåêàðòîâîé ñèñòåìå êîîðäèíàò
êîìïîíåíòû
 ∂ u ∂ u ∂ u 
,
,
,

 ∂ x ∂ y ∂ z 
íàçûâàåòñÿ ãðàäèåíòîì ñêàëÿðíîãî ïîëÿ u (x, y, z) â
äàííîé òî÷êå è îáîçíà÷àåòñÿ ñèìâîëîì grad u :
 ∂ u ∂ u ∂ u  ∂ u ρ ∂ u ρ ∂ u ρ
grad u = 
,
,
ex +
e +
e
=
∂ y y ∂z z.
 ∂ x ∂ y ∂ z  ∂ x
Òåïåðü ñîîòíîøåíèå (1.3) ìîæíî çàïèñàòü â âèäå:
∂ u
∂l
ρ
= l ⋅ grad u
M
.
(1.5)
M
Ñîâîêóïíîñòü òðåõ îïåðàöèé äèôôåðåíöèðîâàíèÿ ∂/∂x, ∂/∂y,
∂/∂z ïðèíÿòî îáîçíà÷àòü ñïåöèàëüíûì ñèìâîëîì ∇ — äèôôåðåíöèàëüíûì îïåðàòîðîì íàáëà, êîòîðûé â äåêàðòîâûõ êîîðäèíàòàõ
çàïèñûâàåòñÿ â âèäå ñèìâîëè÷åñêîãî âåêòîðà ñ êîìïîíåíòàìè
∂/∂x, ∂/∂y, ∂/∂z:
 ∂
∂ ∂ 
∇=
,
,
.
 ∂ x ∂ y ∂ z 
Ýòî îçíà÷àåò, ÷òî âñÿêàÿ ôóíêöèÿ u (x, y, z), ïîäâåðæåííàÿ åãî
äåéñòâèþ, ïðåâðàùàåòñÿ â âåêòîð grad u:
 ∂ u ∂ u ∂ u 
∇u = 
,
,
 = grad u .
 ∂ x ∂ y ∂ z 
Ñ ó÷åòîì ýòîãî, ñîîòíîøåíèå (1.5) óäîáíî çàïèñûâàòü â âèäå:
∂ u ρ
= l ⋅ ∇u
∂l
16
ρ
( l = 1 ).
(1.6)
Äàëåå âåçäå ïîä çàïèñüþ ∇u áóäåì ïîíèìàòü âåêòîð grad u.
Ãðàäèåíò ñêàëÿðíîãî ïîëÿ ∇u îáëàäàåò ñëåäóþùèìè
ñâîéñòâàìè:
a) âåêòîð ∇u íàïðàâëåí ïî íîðìàëè ê ïîâåðõíîñòè óðîâíÿ
u (x, y, z) = C â êàæäîé åå òî÷êå (ðèñ. 2);
Ðèñ. 2
á) âåêòîð ∇u íàïðàâëåí â ñòîðîíó ðîñòà ôóíêöèè u;
â) ñêîðîñòü ðîñòà ôóíêöèè u ìàêñèìàëüíà â íàïðàâëåíèè
ãðàäèåíòà: äåéñòâèòåëüíî, èç (1.6) âèäíî, ÷òî ∂u/∂l→max ïðè
ρ
l ↑↑∇u, à ñàìà âåëè÷èíà ýòîé ìàêñèìàëüíîé ñêîðîñòè ðîñòà
(∂u/∂l)max = ∇u;
ã) ïóñòü u (x, y, z) è v (x, y, z) — äâà ñêàëÿðíûõ ïîëÿ, òîãäà:
∇(u + v) = ∇u + ∇v, ∇(uv) = u ∇v + v ∇u.
Èç ñâîéñòâà à) ñëåäóåò, ÷òî åäèíè÷íàÿ íîðìàëü
ρ
en ê ïî-
âåðõíîñòè óðîâíÿ u (x, y, z) = C â ëþáîé åå òî÷êå âûðàæàåòñÿ ñîîòíîøåíèåì:
ρ
∇u
en =
∇u ,
ïðè÷åì ýòà íîðìàëü íàïðàâëåíà â ñòîðîíó ðîñòà ôóíêöèè u.
ρ ρ
Ïðèìåð 1. Âû÷èñëèòü ãðàäèåíò ñêàëÿðíîãî ïîëÿ u = a ⋅ r ,
ρ
ãäå a = {a1 , a 2 , a3} — ïîñòîÿííûé âåêòîð.
ρ ρ
Ðåøåíèå. Òàê êàê a ⋅ r = a1 x + a2 y + a3 z , òî
 ∂ u ∂ u ∂ u 
ρ
∇u = 
,
,
 = {a1 , a 2 , a3} = a = const .
 ∂ x ∂ y ∂ z 
Ïîñêîëüêó ïîâåðõíîñòÿìè óðîâíÿ äàííîãî ïîëÿ ÿâëÿþòñÿ ïëîñ-
ρ
êîñòè (ñì. ïðèìåð 2 ðàçä. 1.1), òî âåêòîð a áóäåò íîðìàëüíûì ê
ñåìåéñòâó ýòèõ ïëîñêîñòåé.
Ïðèìåð 2. Âû÷èñëèòü ãðàäèåíò ïîòåíöèàëà ïîëÿ òî÷å÷íîãî
çàðÿäà q:
17
ϕ (r ) = k
ãäå k =
q
,
r
1
— êîýôôèöèåíò ïðîïîðöèîíàëüíîñòè â ñèñòåìå ÑÈ.
4πε 0
Ðåøåíèå.

∂ϕ
∂ 
−x
1
x
 = kq
= − kq 3 .
= kq
∂x
∂ x  x 2 + y 2 + z 2 
( x 2 + y 2 + z 2 )3 2
r
Àíàëîãè÷íî:
∂ϕ
∂ϕ
y
z
= − kq 3 ,
= − kq 3 .
∂ y
∂z
r
r
È òîãäà ïîëó÷àåì:
 ∂ ϕ ∂ ϕ ∂ ϕ 
kq
q ρ
∇ϕ = 
,
,
 = − 3 {x , y , z} = − k 3 r .
∂
∂
∂
x
y
z
r
r


Ïðèìåð 3. Îïðåäåëèòü óãîë θ ìåæäó ãðàäèåíòàìè ñêàëÿðíûõ
ïîëåé u = x + y + z è v = x2 + y2 + z2 â òî÷êå Ì (1, 1, 0).
Ðåøåíèå. ∇u = {1, 1, 1} — ýòî ïîñòîÿííûé âåêòîð, íîðìàëüíûé ê ïëîñêîñòè x + y + z = Ñ ; ∇v = {2x, 2y, 2z}M = {2, 2, 0}. Ïðîíîðìèðóåì ýòè ãðàäèåíòû:
ρ ∇u
ρ
∇v
1
1
=
=
n1 =
{111
, , } , n2 =
{11
, ,0} .
∇u
∇v
3
2
Òîãäà
ρ ρ
1
6
cos θ = n1 ⋅ n2 =
(1 + 1 + 0) =
; θ ≈ 35°.
3
6
18
Çàäà÷è
1.43. Âû÷èñëèòü ãðàäèåíò ñêàëÿðíîãî ïîëÿ u = zer â òî÷êå
Ì (0, 0, 0).
• Îïðåäåëèòü óãîë θ ìåæäó ãðàäèåíòàìè ñêàëÿðíîãî ïîëÿ u
â òî÷êàõ Ì è N :
1.44.
u = arctg( x y) , Ì(1,1), N (-1, -1);
1.45. u = cos
1.46. u =
1
, M (1, 0), N (2, 2);
x + y2
2
x
, M (1, 2, 2), N (-3, 1, 0).
x + y2 +z2
2
• Îïðåäåëèòü óãîë θ ìåæäó ãðàäèåíòàìè ñêàëÿðíûõ ïîëåé u
è v â òî÷êå Ì:
1.47. u =
x 2 + y 2 , v = x − 3 y + 3xy ,
1.48. u = r , v = ln r ,
2
Ì (3, 4);
M (0, 0, 1);
M (0, 0, 0).
1.49. u = z exp(r ) , v = x ln( 2 + y 2 + z 2 ) ,
1.50. Âû÷èñëèòü ïðîèçâîäíóþ ñêàëÿðíîãî ïîëÿ u = yzex â
òî÷êå Ì (0, 0, 1) ïî íàïðàâëåíèþ åãî ãðàäèåíòà è
âäîëü îñè y.
1.51. Âû÷èñëèòü ïðîèçâîäíóþ ñêàëÿðíîãî ïîëÿ u = x2 + y2
2
â òî÷êå Ì ( 2 , 1), ïðèíàäëåæàùåé ãèïåðáîëå
x2 — y2 = 1, â íàïðàâëåíèè íîðìàëè ê íåé (â ñòîðîíó
âîçðàñòàíèÿ àáñöèññû).
1.52. Âû÷èñëèòü ïðîèçâîäíóþ ñêàëÿðíîãî ïîëÿ u = ln(xy)
â òî÷êå Ì (1, 2), ïðèíàäëåæàùåé ïàðàáîëå y = 2x2, â
íàïðàâëåíèè íîðìàëè ê íåé (â ñòîðîíó âîçðàñòàíèÿ
àáñöèññû).
1.53. Âû÷èñëèòü ïðîèçâîäíóþ ñêàëÿðíîãî ïîëÿ
u = ln(x2 + y2) â òî÷êå Ì (1, 1) â íàïðàâëåíèè íîðìàëè ê ëèíèè óðîâíÿ ýòîãî ïîëÿ (â ñòîðîíó âîçðàñòàíèÿ àáñöèññû).
19
1.54. Ïîêàçàòü, ÷òî â ëþáîé òî÷êå ýëëèïñà 2x2 + y2 = 3 ïðîèçâîäíàÿ ñêàëÿðíîãî ïîëÿ u = y2/x ïî íàïðàâëåíèþ
íîðìàëè ê ýëëèïñó ðàâíà íóëþ.
1.55.  êàêîé òî÷êå Ì ãðàäèåíò ñêàëÿðíîãî ïîëÿ
u = x2 + 2y2 + 3z2 + xy + 3x — 2y — 6z ðàâåí íóëþ?
1.56.  êàêèõ òî÷êàõ ïðîñòðàíñòâà ãðàäèåíò ñêàëÿðíîãî ïîëÿ
u = x3 + y3 + z3 — 3xyz :
a) ïåðïåíäèêóëÿðåí îñè z;
á) ðàâåí íóëþ?
1.57.  êàêèõ òî÷êàõ ïðîñòðàíñòâà ìîäóëü ãðàäèåíòà ñêàëÿðíîãî ïîëÿ u = ln(1/r) ðàâåí åäèíèöå?
1.58. Âû÷èñëèòü ïðîèçâîäíóþ ñêàëÿðíîãî ïîëÿ u = 1/r
â òî÷êå Ì (2, 2, 1) ïî íàïðàâëåíèþ åãî ãðàäèåíòà
è âäîëü îñè z.
1.59. Âû÷èñëèòü ïðîèçâîäíóþ ñêàëÿðíîãî ïîëÿ u = xyz
â íàïðàâëåíèè ãðàäèåíòà ñêàëÿðíîãî ïîëÿ v = lnr
â òî÷êå Ì (2, 2, 1).
1.60. Âû÷èñëèòü ïðîèçâîäíóþ ñêàëÿðíîãî ïîëÿ u = x3y2z
â òî÷êå Ì (1, 1, 1) â íàïðàâëåíèè ãðàäèåíòà ïîëÿ
v = x3+y2+z â ýòîé òî÷êå.
1.61. Âû÷èñëèòü ïðîèçâîäíóþ ñêàëÿðíîãî ïîëÿ u (x, y, z)
â íàïðàâëåíèè ãðàäèåíòà ñêàëÿðíîãî ïîëÿ v (x, y, z).
Ïðè êàêîì óñëîâèè îíà ðàâíà íóëþ?
• Âû÷èñëèòü ãðàäèåíòû ñëåäóþùèõ ñêàëÿðíûõ ïîëåé, â êîρ
ρ
ρ
òîðûõ a è b — ïîñòîÿííûå âåêòîðû, à r — ðàäèóñ-âåêòîð:
ρρρ
1.62. u = r;
1.66. u = ( abr ) .
1.63. u =
ρ ρ ρ ρ
1.67. u = ( a ⋅ r )( b ⋅ r ) ;
1
;
r2
ρ ρ
a ⋅r
;
r3
ρ ρ ρ
1.69. u = ( a × r ) ⋅ b ;
ρ ρ
1.70. u = ( a × r )2 ;
1.64. u = r n ;
1.68. u =
ρ ρ
1.65. u = r ⋅ ez ;
1.71. Äîêàçàòü, ÷òî â ëþáîé òî÷êå óãîë ìåæäó ãðàäèåíòàìè äâóõ ñêàëÿðíûõ ïîëåé u = 1/(x + y + z)
è v = exp(x + y — 2z) ðàâåí π/2.
20
1.72. Äîêàçàòü, ÷òî ëèíèè óðîâíÿ ñêàëÿðíûõ ïîëåé
u = (x2 — y2)3 è v = exy îáðàçóþò íà ïëîñêîñòè êðèâîëèíåéíóþ îðòîãîíàëüíóþ ñåòêó.
1.73. Äîêàçàòü, ÷òî ñåìåéñòâà ãèïåðáîë x2 — y2 = A (A = A1, A2, ...)
è xy = B (B = B1, B2, ...) âçàèìíî ïåðïåíäèêóëÿðíû â
êàæäîé òî÷êå èõ ïåðåñå÷åíèÿ. Èçîáðàçèòü ýòè ñåìåéñòâà.
• Äîêàçàòü, ÷òî åñëè ñêàëÿðíîå ïîëå u ÿâëÿåòñÿ ñôåðè÷åñêèì, ò. å. u = u (r), òî ñïðàâåäëèâû ñëåäóþùèå ðàâåíñòâà:
ρ
r
∇
u
=
u
′
1.74.
;
r
r
1.75.
ρ
r ⋅ ∇u = rur′ ;
ρ
1.76. r × ∇u = 0 .
1.77. Ïóñòü rNM — ðàññòîÿíèå îò ïåðåìåííîé òî÷êè Ì
ρ
äî íåêîòîðîé ôèêñèðîâàííîé òî÷êè N, eNM — åäèíè÷íûé âåêòîð, íàïðàâëåííûé èç N â M .
ρ
Ïîêàçàòü, ÷òî ∇rNM = eNM .
1.78. Ïóñòü ρNM — ðàññòîÿíèå îò ïåðåìåííîé òî÷êè Ì äî
íåêîòîðîé ôèêñèðîâàííîé ïðÿìîé, è òî÷êà N åñòü
îñíîâàíèå ïåðïåíäèêóëÿðà, îïóùåííîãî èç òî÷êè Ì
ρ
ρ
íà ýòó ïðÿìóþ. Ïîêàçàòü, ÷òî ∇ρ NM = eNM , ãäå eNM —
åäèíè÷íûé âåêòîð, íàïðàâëåííûé èç N â M.
1.79. Îïðåäåëèòü óãîë ìåæäó íîðìàëÿìè ê ïàðàáîëîèäó
z = x2+ y2 â òî÷êàõ Ì (1/2, 0, 1/4) è N (0, 1/2, 1/4).
1.80. Îïðåäåëèòü óãîë ìåæäó íîðìàëÿìè ê ñôåðå
x2 + y2 + z2 = 1
â
òî÷êàõ
Ì (1/2, 1/2, 1/
2 )
è N (-1/2, 1/2, -1/ 2 ).
1.81. Ïóñòü r1 è r2 — ðàññòîÿíèÿ îò ïåðåìåííîé òî÷êè äî
íåêîòîðûõ ôèêñèðîâàííûõ òî÷åê Ì1 è Ì2. Ýëëèïñ
åñòü ìíîæåñòâî òî÷åê ïëîñêîñòè, äëÿ êîòîðûõ ñóììà
ýòèõ ðàññòîÿíèé îñòàåòñÿ ïîñòîÿííîé. Ðàññìàòðèâàÿ
ýëëèïñ êàê ëèíèþ óðîâíÿ ñêàëÿðíîãî ïîëÿ u = r1 + r2,
äîêàçàòü, ÷òî åãî íîðìàëü â ïðîèçâîëüíîé òî÷êå Ì
ÿâëÿåòñÿ áèññåêòðèñîé óãëà Ì1ÌÌ2.
Ïîäñêàçêà. Âîñïîëüçîâàòüñÿ ðåçóëüòàòîì çàäà÷è 1.77.
21
1.82. Ïàðàáîëà åñòü ìíîæåñòâî òî÷åê ïëîñêîñòè, äëÿ êîòîðûõ ðàññòîÿíèå r äî ôèêñèðîâàííîé òî÷êè, íàçûâàåìîé ôîêóñîì, ðàâíî ðàññòîÿíèþ ρ äî ôèêñèðîâàííîé ïðÿìîé, íàçûâàåìîé äèðåêòðèñîé. Ðàññìàòðèâàÿ
ïàðàáîëó êàê ëèíèþ óðîâíÿ ñêàëÿðíîãî ïîëÿ
u = r — ρ , äîêàçàòü, ÷òî ñâåòîâûå ëó÷è, ïàðàëëåëüíûå îñè ïàðàáîëè÷åñêîãî çåðêàëà, ïîñëå îòðàæåíèÿ
îò åãî ïîâåðõíîñòè ïåðåñåêàþòñÿ â ôîêóñå.
Ïîäñêàçêà. Âîñïîëüçîâàòüñÿ ðåçóëüòàòàìè çàäà÷ 1.77
è 1.78.
1.83. «... Çàêîí ãèïåðáîëè÷åñêèõ çåðêàë òàêîâ: ëó÷è ñâåòà,
ïàäàÿ íà âíóòðåííþþ ïîâåðõíîñòü ãèïåðáîëè÷åñêîãî
çåðêàëà, ñõîäÿòñÿ â îäíîé òî÷êå, â ôîêóñå ãèïåðáîëû ...» (À.Í. Òîëñòîé. Ãèïåðáîëîèä èíæåíåðà Ãàðèíà).
Ïîêàçàòü, ÷òî â ôîêóñå ãèïåðáîëè÷åñêîãî çåðêàëà
ñõîäÿòñÿ ëèøü òå ëó÷è, êîòîðûå äî ïàäåíèÿ íà åãî
ïîâåðõíîñòü áûëè íàïðàâëåíû âî âòîðîé ôîêóñ. Èñïîëüçîâàòü òîò ôàêò, ÷òî ãèïåðáîëà åñòü ìíîæåñòâî
òî÷åê ïëîñêîñòè, äëÿ êîòîðûõ ðàçíîñòü ðàññòîÿíèé
äî äâóõ ôèêñèðîâàííûõ òî÷åê (ôîêóñîâ) åñòü âåëè÷èíà ïîñòîÿííàÿ.
22
2. ÂÅÊÒÎÐÍÎÅ ÏÎËÅ
Îïðåäåëåíèå. Åñëè â êàæäîé òî÷êå Ì(x,y,z) íåêîòîðîé îáëàñòè
ïðîñòðàíñòâà îïðåäåëåíà âåêòîðíàÿ âåëè÷èíà
ρ
a ( x , y, z ) , òî ãîâîðÿò, ÷òî â ýòîé îáëàñòè çàäàíî âåêρ
òîðíîå ïîëå a .
Åñëè ââåäåíà äåêàðòîâà ñèñòåìà êîîðäèíàò, òî çàäàíèå âåêρ
òîðíîãî ïîëÿ a ( x, y , z ) ýêâèâàëåíòíî çàäàíèþ òðåõ ñêàëÿðíûõ ôóíêöèé ax(x,y,z), ay(x,y,z), az(x,y,z), ò. å.
ρ
ρ
ρ
ρ
a ( x , y , z ) = a x ( x , y , z )e x + a y ( x , y , z )e y + a z ( x , y, z )e z .
Ïðèìåðû ôèçè÷åñêèõ âåêòîðíûõ ïîëåé:
ρ ρ
• v = v ( x , y , z ) — ïîëå ñêîðîñòåé ÷àñòèö â ïîòîêå æèäêîñòè;
ρ ρ
• F = F ( x , y , z ) — ïîëå ãðàâèòàöèîííûõ ñèë íåêîòîðîé
ñèñòåìû ìàññ;
ρ ρ
• E = E ( x , y , z ) — ýëåêòðè÷åñêîå ïîëå.
ρ
Îïðåäåëåíèå. Âåêòîðíîå ïîëå a íàçûâàåòñÿ ñòàöèîíàðíûì, åñëè
ρ ρ
îíî íå çàâèñèò îò âðåìåíè. Åñëè æå a = a ( x, y, z, t ) , òî
ρ
ïîëå a íàçûâàåòñÿ íåñòàöèîíàðíûì. Äàëåå, åñëè íå
áóäåò ñïåöèàëüíûõ îãîâîðîê, ðàññìàòðèâàþòñÿ òîëüêî ñòàöèîíàðíûå âåêòîðíûå ïîëÿ.
2.1. Âåêòîðíûå ëèíèè
Ãåîìåòðè÷åñêèì ïðåäñòàâëåíèåì âåêòîðíîãî ïîëÿ ñëóæàò
âåêòîðíûå ëèíèè.
ρ
Îïðåäåëåíèå. Ëèíèåé âåêòîðíîãî ïîëÿ a ( x , y, z ) íàçûâàåòñÿ îðèåíòèðîâàííàÿ â ïðîñòðàíñòâå êðèâàÿ, â êàæäîé òî÷êå
êîòîðîé âåêòîð aρ íàïðàâëåí ïî êàñàòåëüíîé ê ýòîé
êðèâîé.
Ïðèìåðû âåêòîðíûõ ëèíèé:
• ëèíèè ïîëÿ ñêîðîñòåé òî÷åê âðàùàþùåãîñÿ âîêðóã
ôèêñèðîâàííîé îñè òâåðäîãî òåëà ÿâëÿþòñÿ êîíöåíòðè÷åñêèìè îêðóæíîñòÿìè;
23
• ëèíèè ïîëÿ ñêîðîñòåé ÷àñòèö â ïîòîêå æèäêîñòè —
ýòî èõ òðàåêòîðèè;
ρ
• ëèíèè ýëåêòðè÷åñêîãî ïîëÿ E òî÷å÷íîãî çàðÿäà —
ýòî ðàäèàëüíûå ëó÷è, èñõîäÿùèå èç çàðÿäà.
ρ
Åñëè ïîëå a ñòàöèîíàðíî, òî åãî âåêòîðíûå ëèíèè íåèçìåííû â ïðîñòðàíñòâå.
ρ
Òàê êàê âåêòîðíîå ïîëå a ïðåäïîëàãàåòñÿ îäíîçíà÷íûì,
ρ
ò. å. êàæäîé òî÷êå Ì ñîîòâåòñòâóåò åäèíñòâåííûé âåêòîð a ( M ) ,
òî ÷åðåç êàæäóþ òî÷êó Ì ïðîõîäèò òîëüêî îäíà âåêòîðíàÿ ëèíèÿ, ò. å. âåêòîðíûå ëèíèè íå ïåðåñåêàþòñÿ.
ρ
Îïðåäåëåíèå. Åñëè âåêòîðíîå ïîëå a ïîñòîÿííî â ïðîñòðàíñòâå
êàê
ïî âåëè÷èíå, òàê è ïî íàïðàâëåíèþ, ò. å.
ρ
a = const(x, y, z) , òî îíî íàçûâàåòñÿ îäíîðîäíûì. Ãåîìåòðè÷åñêè îäíîðîäíîå ïîëå èçîáðàæàåòñÿ ñåìåéñòâîì
ïàðàëëåëüíûõ îðèåíòèðîâàííûõ ïðÿìûõ, ðàâíîîòñòîÿùèõ äðóã îò äðóãà.
Ïóñòü çàäàíî âåêòîðíîå ïîëå
ρ
a = {a x ( x , y , z ), a y ( x , y , z ), a z ( x , y , z )}.
Åãî âåêòîðíûå ëèíèè îïèñûâàþòñÿ ñèñòåìîé äèôôåðåíöèàëüíûõ óðàâíåíèé:
dx dy dz
=
=
a x a y az .
(2.1)
Èõ èíòåãðèðîâàíèå äàåò ñèñòåìó äâóõ àëãåáðàè÷åñêèõ óðàâíåíèé:
ϕ1( x, y, z ) = C1;

ϕ2( x, y, z ) = C2,
êàæäîå èç êîòîðûõ çàäàåò íåêîòîðóþ ïîâåðõíîñòü â ïðîñòðàíñòâå
(à òî÷íåå — ñåìåéñòâî ïîâåðõíîñòåé). Ïåðåñå÷åíèå êàæäîé ïàðû
ïîâåðõíîñòåé ýòèõ ñåìåéñòâ è îáðàçóåò âåêòîðíóþ ëèíèþ ïîëÿ
ρ
a ( x , y, z ) .
ρ
Ïðèìåð 1. Íàéòè âåêòîðíûå ëèíèè ïîëÿ v ( x , y, z ) ñêîðîñòåé
òî÷åê òâåðäîãî òåëà, âðàùàþùåãîñÿ âîêðóã îñè z ñ óãëîâîé ñêîρ
ðîñòüþ ω = {0,0, ω } , è îïðåäåëèòü èõ îðèåíòàöèþ.
24
ρ ρ ρ
Ðåøåíèå. Òàê êàê v = ω × r , òî
ρ
ex
ρ
v= 0
ρ
ey
x
y
0
ρ
ez
ρ
ρ
ω = −ωyex + ωxey + 0 = ω{− y, x,0}
.
z
(2.2)
Ïîäñòàâëÿÿ êîìïîíåíòû âåêòîðà vρ â ñèñòåìó (2.1), ïîëó÷àåì:
dy dz
dx
=
=
−y
0 .
x
Èç ïîñëåäíåé äðîáè ñëåäóåò, ÷òî z = const — ýòî ñåìåéñòâî ïëîñêîñòåé z = C1, C2, ..., ïåðïåíäèêóëÿðíûõ îñè z. Ïåðâîå ðàâåíñòâî
ïðèâîäèò ê óðàâíåíèþ: xdx + ydy = 0, èëè: d(x2 + y2) = 0. Îòñþäà:
x2 + y2 = R2. Ýòî ñåìåéñòâî êðóãîâûõ öèëèíäðîâ, ñîîñíûõ îñè z.
Âåêòîðíûå ëèíèè îáðàçóþòñÿ ïåðåñå÷åíèåì íàéäåííûõ ïëîñêîñòåé è öèëèíäðîâ, ò. å. ýòî áóäåò ñåìåéñòâî êîíöåíòðè÷åñêèõ
îêðóæíîñòåé ñ îáùåé îñüþ z.
Îðèåíòàöèÿ ëèíèé îïðåäåëÿåòñÿ èç àíàëèçà çíàêîâ êîìïîíåíò âåêòîðíîãî ïîëÿ (2.2) â ðàçëè÷íûõ îáëàñòÿõ ïðîñòðàíñòâà.
Òàê íàïðèìåð, â ïîëóïðîñòðàíñòâå y > 0 êîìïîíåíòà vx = -ωy < 0.
Ýòî îçíà÷àåò, ÷òî â îáëàñòè y > 0 ñòðåëêà âåêòîðíîé ëèíèè íàïðàâëåíà â ñòîðîíó óáûâàíèÿ êîîðäèíàòû x. Ñëåäîâàòåëüíî, îðèåíòàöèÿ îêðóæíîñòè áóäåò îáðàçîâûâàòü ïðàâûé âèíò îòíîñèòåëüíî ñòðåëêè îñè z (ðèñ. 3).
Àíàëîãè÷íûé àíàëèç êîìïîíåíòû vy (vy > 0 ïðè x > 0) ïðèâîäèò ê òàêîìó æå ðåçóëüòàòó.
Ðèñ. 3
ρ
ρ
ρ
ρ
Ïðèìåð 2. Íàéòè âåêòîðíóþ ëèíèþ ïîëÿ a = − ye x + xe y + be z ,
ïðîõîäÿùóþ ÷åðåç òî÷êó (1, 0, 0).
25
Ðåøåíèå. Äèôôåðåíöèàëüíûå óðàâíåíèÿ âåêòîðíîé ëèíèè
çäåñü èìåþò âèä:
dy dz
dx
=
=
−y
x
b .
(2.3)
Èç ïåðâîãî óðàâíåíèÿ íàõîäèì: x2 + y2 = C12 — ýòî ñåìåéñòâî öèëèíäðîâ. ×òîáû ïðîèíòåãðèðîâàòü âòîðîå óðàâíåíèå, ââåäåì ïàðàìåòð t òàêîé, ÷òî
x = C1 cos t , y = C1 sin t .
Òîãäà âòîðîå óðàâíåíèå ñèñòåìû (2.3) áóäåò: dz = bdt, îòêóäà
z = bt + C2 .
Èòàê, ïîëó÷àåì ïàðàìåòðè÷åñêèå óðàâíåíèÿ âåêòîðíûõ
ëèíèé:
x = C1 cos t,

 y = C1 sin t, .
 z = bt + C .
2

 òî÷êå (1, 0, 0) ïàðàìåòð t = 0. Ïîäñòàâëÿÿ çíà÷åíèå t â âûøåïðèâåäåííóþ ñèñòåìó, íàõîäèì: Ñ1 = 1, Ñ2 = 0.
Òàêèì îáðàçîì, ïàðàìåòðè÷åñêèå óðàâíåíèÿ âåêòîðíîé ëèíèè, ïðîõîäÿùåé ÷åðåç òî÷êó (1, 0, 0), áóäóò èìåòü âèä:
x = cos t,

 y = sin t, .
z = bt.

Ýòî — âèíòîâàÿ ëèíèÿ.
ρ
Îïðåäåëåíèå. Âåêòîðíîå ïîëå a íàçûâàåòñÿ ïëîñêèì, åñëè âñå åãî
âåêòîðíûå ëèíèè ëåæàò â ïàðàëëåëüíûõ ïëîñêîñòÿõ,
è â êàæäîé èç ýòèõ ïëîñêîñòåé ïîëå îäíî è òî æå.
 ýòîì ñëó÷àå â êàêîé-ëèáî èç òàêèõ ïëîñêîñòåé óäîáíî
ρ
ââåñòè äåêàðòîâó ñèñòåìó x0y, è òîãäà ïîëå a â ýòîé ñèñòåìå íå
áóäåò ñîäåðæàòü z-êîìïîíåíòû:
ρ
ρ
ρ
a = ax ( x, y )ex + a y ( x, y )ey = {ax , a y} .
Òåïåðü åäèíñòâåííîå äèôôåðåíöèàëüíîå óðàâíåíèå ïëîñêîé
âåêòîðíîé ëèíèè ïðèíèìàåò âèä:
26
dy a y ( x, y )
=
dx ax ( x, y ) , (z = const).
Ïðèìåðîì ïëîñêîãî âåêòîðíîãî ïîëÿ ÿâëÿåòñÿ ïîëå ñêîðîñòåé (2.2).
Çàäà÷è
• Ïîñòðîèòü ñåìåéñòâà âåêòîðíûõ ëèíèé è îòìåòèòü èõ îðèåíòàöèè äëÿ ñëåäóþùèõ ïëîñêèõ ïîëåé:
ρ
ρ
2.1. a = {x , y} ;
2.5. a = {x 2, xy} ;
ρ
ρ
2.2. a = {− x , y} ;
2.6. a = {x ,2 y} ;
ρ
ρ
2.3. a = { y , x} ;
2.7. a = {1,2 x} ;
ρ
ρ
2.4. a = {− y , x} ;
2.8. a = {x − y , x + y} .
• Ïîñòðîèòü ñåìåéñòâà âåêòîðíûõ ëèíèé ïîëåé ãðàäèåíòîâ
ñëåäóþùèõ ñêàëÿðíûõ ôóíêöèé:
2.9. u = x 2 − y 2 ; 2.11. u = xy ;
2.13. u = y x 2 ;
2.10. u = y x ;
2.12. u =
x2
1
+ y 2 ; 2.14. u = .
4
r
ρ
2.15. Òî÷å÷íûé çàðÿä, äâèæóùèéñÿ ñî ñêîðîñòüþ v , ñîçäàåò â îêðóæàþùåì ïðîñòðàíñòâå ìàãíèòíîå ïîëå
ρ
ρ
ρ ρ
B = k ( v × r ) / r 3 , ãäå r — âåêòîð, ïðîâåäåííûé èç
çàðÿäà ê òî÷êå íàáëþäåíèÿ, k — íåêîòîðûé êîýôôèöèåíò. Ïóñòü çàðÿä ðàâíîìåðíî äâèæåòñÿ âäîëü îñè
ρ
ρ
z ñî ñêîðîñòüþ v . Íàéòè âåêòîðíûå ëèíèè ïîëÿ B ,
ñîçäàâàåìîãî ýòèì çàðÿäîì.
2.16. Íàéòè âåêòîðíóþ ëèíèþ ïîëÿ ãðàäèåíòà ñêàëÿðíîé
ôóíêöèè
u=
z
x2 + y2 ,
ïðîõîäÿùóþ ÷åðåç òî÷êó Ì (0, 1, 1).
27
2.2. Ïîòîê
ρ
Îïðåäåëåíèå. Ïóñòü â âåêòîðíîì ïîëå a ( x, y , z ) íàõîäèòñÿ ãëàäêàÿ
îðèåíòèðîâàííàÿ ïîâåðõíîñòü S. Òîãäà ïîâåðõíîñòíûé èíòåãðàë
ρ ρ
ρ ρ
(2.4)
Φ = ∫∫ (a ⋅ en )dS = ∫∫ a ⋅ dS
S
S
ρ
íàçûâàåòñÿ ïîòîêîì âåêòîðíîãî ïîëÿ a ÷åðåç ïîâåðρ
õíîñòü S; çäåñü en — åäèíè÷íàÿ ïîëîæèòåëüíàÿ íîðρ ρ
ìàëü ê ïîâåðõíîñòè S íà åå ýëåìåíòå dS, dS = en dS —
îðèåíòèðîâàííûé ýëåìåíò ïîâåðõíîñòè S.
Ïîòîê Ô ÿâëÿåòñÿ âåëè÷èíîé ñêàëÿðíîé è àëãåáðàè÷åñêîé,
ò.å. îí ìîæåò áûòü áîëüøå íóëÿ, ðàâåí íóëþ èëè ìåíüøå íóëÿ.
Åñëè ïîâåðõíîñòü S çàìêíóòà, òî åå óñëîâíî ïîëîæèòåëüíîé
ρ
ñòîðîíîé ÿâëÿåòñÿ íàðóæíàÿ, ò.å. ïîëîæèòåëüíóþ íîðìàëü en â
ëþáîé åå òî÷êå ïðèíÿòî íàïðàâëÿòü íàðóæó. Ïîòîê âåêòîðíîãî
ρ
ïîëÿ a ÷åðåç çàìêíóòóþ ïîâåðõíîñòü îáîçíà÷àåòñÿ òàê:
ρ ρ
Φ = ∫∫ a ⋅ dS .
S
Ñâîéñòâà ïîòîêà
1. Ïðè ñìåíå óñëîâíî ïîëîæèòåëüíîé ñòîðîíû ïîâåðõíîñòè S ïîòîê Ô ìåíÿåò çíàê.
ρ
ρ
2. Ïóñòü a è b — êàêèå-ëèáî âåêòîðíûå ïîëÿ, à p è q
— äåéñòâèòåëüíûå ÷èñëà, òîãäà
ρ ρ
ρ ρ ρ
ρ ρ
∫∫ ( pa + qb ) ⋅ dS = p∫∫ a ⋅ dS + q∫∫ b ⋅ dS .
S
S
S
Ýòî ñâîéñòâî íàçûâàåòñÿ ëèíåéíîñòüþ ïîòîêà.
3. Åñëè ïîâåðõíîñòü S ñîñòîèò èç íåñêîëüêèõ ãëàäêèõ
ôðàãìåíòîâ S1, S2, ..., SN, òî
ρ
ρ
ρ
N
ρ
∫∫ a ⋅ dS = ∑
∫∫ a ⋅ dS .
k =1
S
Sk
28
Ýòî ñâîéñòâî íàçûâàåòñÿ àääèòèâíîñòüþ ïîòîêà.
ρ
Âû÷èñëåíèå ïîòîêà âåêòîðíîãî ïîëÿ a ÷åðåç ïîâåðõíîñòü S
â îáùåì ñëó÷àå åñòü çàäà÷à î âû÷èñëåíèè ïîâåðõíîñòíîãî èíòåãðàëà (2.4), äëÿ ðåøåíèÿ êîòîðîé ñóùåñòâóåò íåñêîëüêî ñïåöèàëüíûõ ìàòåìàòè÷åñêèõ ìåòîäîâ. Îäíàêî äëÿ íåêîòîðûõ ÷àñòíûõ
ρ
âàðèàíòîâ âåêòîðíûõ ïîëåé a è ïîâåðõíîñòåé S ýòó çàäà÷ó óäàåòñÿ ñâåñòè ê ïðîñòîìó óìíîæåíèþ.
ρ ρ
Ïðèìåð 1. Âû÷èñëèòü ïîòîê âåêòîðíîãî ïîëÿ a = r ÷åðåç
ïëîñêóþ ïëàñòèíêó ïëîùàäüþ S, íå ïðîõîäÿùóþ ÷åðåç íà÷àëî
êîîðäèíàò.
ρ
Ðåøåíèå. Ýëåìåíòàðíûé ïîòîê ïîëÿ r ÷åðåç ïëîùàäêó dS
ïëàñòèíêè
ρ ρ
dΦ = r ⋅ dS = r cos α dS = hdS ,
ãäå h — ðàññòîÿíèå îò ïëîñêîñòè ïëàñòèíêè äî íà÷àëà êîîðäèíàò
(ðèñ. 4). Ïîëîæèòåëüíàÿ íîðìàëü ê ïëàñòèíêå çäåñü âûáðàíà îò
ρ
íà÷àëà êîîðäèíàò Î. Ñëåäîâàòåëüíî, ïîòîê âåêòîðà r ÷åðåç âñþ
ïëàñòèíêó
ρ ρ
Φ = ∫∫ r ⋅ dS = h ∫∫ dS = hS .
S
S
Ðèñ. 4
ρ ρ
Ïðèìåð 2. Âû÷èñëèòü ïîòîê âåêòîðíîãî ïîëÿ a = r ÷åðåç
çàìêíóòóþ ïîâåðõíîñòü S, îõâàòûâàþùóþ íà÷àëî êîîðäèíàò.
Ðåøåíèå. Ðàçîáüåì îáúåì V, îãðàíè÷åííûé äàííîé ïîâåðõíîñòüþ S, íà óçêèå ïèðàìèäû ñ êîñûìè îñíîâàíèÿìè dS, ÿâëÿþùèìèñÿ ó÷àñòêàìè ïîâåðõíîñòè S, è îáùåé âåðøèíîé Î â íà÷àëå êîîðäèíàò (ðèñ. 5). È ïóñòü dSn = dScosα — ïðîåêöèÿ ïëîùàä-
29
ρ
êè dS íà ïëîñêîñòü, ïåðïåíäèêóëÿðíóþ âåêòîðó r . Òîãäà îáúåì
ïèðàìèäû ñ ïëîùàäüþ îñíîâàíèÿ dSn è âûñîòîé r
1
dS r .
3 n
dV =
.
Ðèñ. 5
ρ
Ïîòîê âåêòîðà r ÷åðåç ïëîùàäêó dS
ρ ρ
dΦ = r ⋅ dS = r cos α dS = rdS n = 3dV .
ρ
Ñëåäîâàòåëüíî, ïîòîê âåêòîðà r ÷åðåç âñþ çàìêíóòóþ ïîâåðõíîñòü S
Φ = ∫∫ dΦ = 3∫∫ dV = 3V .
S
S
Àíàëîãè÷íûì ñïîñîáîì ìîæíî ïîêàçàòü, ÷òî ýòîò æå ðåçóëüòàò áóäåò ïîëó÷åí è â ñëó÷àå, êîãäà íà÷àëî êîîðäèíàò Î
ëåæèò âíå çàìêíóòîé ïîâåðõíîñòè S.
ρ
Ïðèìåð 3. Âû÷èñëèòü ïîòîê ïîëÿ a = {x 2 + y 2, y 2 + z 2, z 2 + x 2}
÷åðåç ÷àñòü ïëîñêîñòè x0y, îãðàíè÷åííóþ îêðóæíîñòüþ x2+y2 = R2
è îðèåíòèðîâàííóþ â íàïðàâëåíèè îñè z.
ρ ρ
Ðåøåíèå. Òàê êàê åäèíè÷íàÿ íîðìàëü en = e z , à êðóã ëåæèò
â ïëîñêîñòè z = 0, òî ïîòîê
ρ ρ
ρ ρ
Φ = ∫∫ a ⋅ dS = ∫∫ (a ⋅ ez )dS = ∫∫ az dS = ∫∫ ( z 2 + x 2 )dS = ∫∫ x 2dS ,
S
S
S
S
S
ãäå S — êðóã x + y = R , dS — ýëåìåíò ïëîùàäè ýòîãî êðóãà.
2
2
2
30
Ïîëó÷åííûé ïîâåðõíîñòíûé èíòåãðàë ëåãêî âû÷èñëÿåòñÿ êàê
â äåêàðòîâûõ, òàê è â ïîëÿðíûõ êîîðäèíàòàõ. Â äåêàðòîâûõ êîîðäèíàòàõ ýëåìåíò ïëîùàäè dS = dxdy, è ïîòîê
R
Φ = 4∫ x 2dx
0
R2 − x 2
R
π
∫ dy = 4∫ x 2 R2 − x 2 dx = 4 R4 .
0
0
 ïîëÿðíûõ êîîðäèíàòàõ: x = r cosϕ, dx = -r sinϕ⋅ dϕ, dS = rdr dϕ,
è òîãäà ïîòîê
R 2π
Φ = ∫∫ x 2dS = ∫ ∫ r 2 cos2 ϕ ⋅ rdrdϕ =
S
0 0
2π
π
R4
cos2 ϕ ⋅ dϕ = R4 .
4 ∫0
4
Çàäà÷è
ρ ρ
2.17. Âû÷èñëèòü ïîòîê ïîëÿ a = r ÷åðåç çàìêíóòóþ ïîâåðõíîñòü â âèäå «êîíóñà ñ äíîì», ñîîñíîãî îñè z. Âåðøèíà êîíóñà íàõîäèòñÿ â òî÷êå (0, 0, 0), à åãî îñíîâàíèåì ÿâëÿåòñÿ êðóã ðàäèóñîì R, ïàðàëëåëüíûé ïëîñêîñòè x0y è íàõîäÿùèéñÿ íà ðàññòîÿíèè z = H îò íåå.
ρ ρ
2.18. Âû÷èñëèòü ïîòîê ïîëÿ a = r ÷åðåç áîêîâóþ ïîâåðõíîñòü êðóãîâîãî êîíóñà, îñíîâàíèå êîòîðîãî ðàäèóñîì R ëåæèò â ïëîñêîñòè x0y, à âåðøèíà íàõîäèòñÿ â
òî÷êå (0, 0, H).
ρ ρ
2.19. Äîêàçàòü, ÷òî ïîòîê ïîëÿ a = r ÷åðåç çàìêíóòóþ ïîâåðõíîñòü S, íå îõâàòûâàþùóþ íà÷àëî êîîðäèíàò,
ðàâåí 3V, ãäå V — îáúåì, îõâàòûâàåìûé ïîâåðõíîñòüþ S.
ρ ρ
2.20. Âû÷èñëèòü ïîòîê ïîëÿ a = r ÷åðåç öèëèíäðè÷åñêóþ
ïîâåðõíîñòü x2 + y2 = R2, 0 ≤ z ≤ h.
ρ ρ
2.21. Âû÷èñëèòü ïîòîê ïîëÿ a = r r 3 ÷åðåç ñôåðó ðàäèóñîì R ñ öåíòðîì â íà÷àëå êîîðäèíàò.
ρ
ρ
2.22. Âû÷èñëèòü ïîòîê öåíòðàëüíîãî ïîëÿ a = f ( r )r (ãäå
f (r) — ïðîèçâîëüíàÿ ñêàëÿðíàÿ ôóíêöèÿ ðàññòîÿíèÿ
òî÷êè äî íà÷àëà êîîðäèíàò) ÷åðåç ñôåðó ðàäèóñîì R
ñ öåíòðîì â íà÷àëå êîîðäèíàò.
31
2.23. Òî÷å÷íûé çàðÿä, íàõîäÿùèéñÿ â íà÷àëå êîîðäèíàò,
ñîçäàåò â îêðóæàþùåì ïðîñòðàíñòâå ýëåêòðè÷åñêîå
ρ
ρ
ïîëå E = kr r 3 , ãäå k — íåêîòîðûé êîýôôèöèåíò. Âû-
2.24.
2.25.
2.26.
2.27.
2.28.
2.29.
2.30.
2.31.
2.32.
2.33.
÷èñëèòü ïîòîê ýòîãî ïîëÿ ÷åðåç êðóã ðàäèóñîì R, îñü
êîòîðîãî ÿâëÿåòñÿ îñüþ z, à åãî öåíòð ëåæèò íà ðàññòîÿíèè z = h îò íà÷àëà êîîðäèíàò.
ρ ρ 3
Âû÷èñëèòü ïîòîê ïîëÿ a = r / r ÷åðåç ïëîñêîñòü
z = h ≠ 0.
ρ
Âû÷èñëèòü ïîòîê îäíîðîäíîãî ïîëÿ a = {a x , a y , a z } ÷åðåç êðóã ðàäèóñîì R, ïåðïåíäèêóëÿðíûé îñè z.
ρ
Âû÷èñëèòü ïîòîê îäíîðîäíîãî ïîëÿ a = {0,0, a z } ÷åðåç ïëîùàäêó S â ôîðìå òðåóãîëüíèêà ñ âåðøèíàìè
â òî÷êàõ M1 (1, 0, 0), M2 (0, 2, 0), M3 (0, 0, 3).
ρ
Âû÷èñëèòü ïîòîê îäíîðîäíîãî ïîëÿ a = {0,0, a z } ÷åðåç âåðõíþþ ïîëóñôåðó x2 + y2 + z2 = R2.
ρ
Äîêàçàòü, ÷òî ïîòîê îäíîðîäíîãî ïîëÿ a ÷åðåç çàìêíóòóþ ïîâåðõíîñòü ðàâåí íóëþ.
ρ
Âû÷èñëèòü ïîòîê ïîëÿ a = {x 2 + y 2, y 2 + z 2, z 2 + x 2} ÷åðåç ïîâåðõíîñòü êóáà 0 ≤ x ≤ l, 0 ≤ y ≤ l, 0 ≤ z ≤ l.
ρ
Âû÷èñëèòü ïîòîê ïîëÿ a = {x 3, y3, z 3} ÷åðåç ïîâåðõíîñòü
êóáà 0 ≤ x ≤ l, 0 ≤ y ≤ l, 0 ≤ z ≤ l.
ρ
Âû÷èñëèòü ïîòîê ïîëÿ a = {1,−1, xyz} ÷åðåç êðóã, ïîëó÷åííûé ñå÷åíèåì øàðà x2 + y2 + z2 ≤ R2 ïëîñêîñòüþ
y = x. Íîðìàëü ê êðóãó îáðàçóåò îñòðûé óãîë ñ îðρ
òîì ex .
ρ
Âû÷èñëèòü ïîòîê ïîëÿ a = { y + z, x + z, x + y} ÷åðåç
êðóã, ïîëó÷åííûé ñå÷åíèåì øàðà x2 + y2 + z2 ≤ 1 ïëîñêîñòüþ x + y + z = 1. Íîðìàëü ê êðóãó îáðàçóåò îñòρ
ðûé óãîë ñ îðòîì e z .
ρ
Âû÷èñëèòü ïîòîê ïîëÿ a = {x 2, y 2, z 2} ÷åðåç òðåóãîëüíóþ ïëîùàäêó, âåðøèíû êîòîðîé íàõîäÿòñÿ
â òî÷êàõ Ì1 (1, 2, 0), Ì2 (0, 2, 0) è Ì3 (0, 2, 2).
32
2.34.
2.35.
2.36.
2.37.
Íîðìàëü ê ïëîùàäêå íàïðàâëåíà â ñòîðîíó íà÷àëà
êîîðäèíàò.
ρ
Âû÷èñëèòü ïîòîê ïîëÿ a = {2x 2 − y, y − x 2,1 − x 2} ÷åðåç
òðåóãîëüíóþ ïëîùàäêó — ÷àñòü ïëîñêîñòè
x + y + z — 3 = 0, ðàñïîëîæåííóþ â ïåðâîì îêòàíòå.
ρ
Íîðìàëü ê ïëîùàäêå îáðàçóåò îñòðûé óãîë ñ îðòîì e y .
ρ
Âû÷èñëèòü ïîòîê ïîëÿ a = { y, z, x} ÷åðåç òðåóãîëüíóþ
ïëîùàäêó — ÷àñòü ïëîñêîñòè x + y + z — 3 = 0, ðàñïîëîæåííóþ â ïåðâîì îêòàíòå. Íîðìàëü ê ïëîùàäêå
ρ
îáðàçóåò îñòðûé óãîë ñ îðòîì e y .
ρ
Âû÷èñëèòü ïîòîê ïîëÿ a = { y + x, y − x, x + y + z} ÷åðåç
ïîâåðõíîñòü öèëèíäðà x2 + y2 = R2, îãðàíè÷åííóþ
ïëîñêîñòÿìè z = 0 è z = 1.
ρ ρ
Âû÷èñëèòü ïîòîê ïîëÿ a = r ÷åðåç ó÷àñòîê ïëîñêîñòè x —2y + z = 2, îãðàíè÷åííûé êîîðäèíàòíûìè
ïëîñêîñòÿìè. Íîðìàëü ê ïëîñêîñòè îáðàçóåò îñòðûé
ρ
óãîë ñ îðòîì e z .
Ïîäñêàçêà. Ðàññòîÿíèå h îò ïëîñêîñòè
Ax + By + Cz = D äî íà÷àëà êîîðäèíàò îïðåäåëÿåòñÿ
ôîðìóëîé
h=
D
.
A2 + B2 + C 2
2.3. Äèâåðãåíöèÿ
ρ
Ïóñòü çàäàíî âåêòîðíîå ïîëå a ( x , y, z ) . Âûáåðåì â ýòîì ïîëå
íåêîòîðóþ òî÷êó Ì è îêðóæèì åå çàìêíóòîé ïîâåðõíîñòüþ ∆S
ïðîèçâîëüíîé ôîðìû. È ïóñòü ∆V — îáúåì, îãðàíè÷åííûé ïîâåðõíîñòüþ ∆S. Ñîñòàâèì îòíîøåíèå:
ρ ρ
∫∫ a ⋅ dS
∆S
.
(2.5)
∆V
33
Åñëè ïîâåðõíîñòü ∆S ñòÿãèâàòü ê òî÷êå Ì, ò. å. ∆S→0Ì, òî è
∆V→0. Ïðè ýòîì îòíîøåíèå (2.5) ìîæåò ñòðåìèòüñÿ êàê ê êîíå÷íîìó, òàê è ê áåñêîíå÷íîìó ïðåäåëó.
Îïðåäåëåíèå. Åñëè îòíîøåíèå (2.5) èìååò êîíå÷íûé ïðåäåë, êîãäà
îáëàñòü ∆V ñòÿãèâàåòñÿ ê òî÷êå Ì, òî ýòîò ïðåäåë
ρ
íàçûâàåòñÿ äèâåðãåíöèåé âåêòîðíîãî ïîëÿ a â òî÷êå
ρ
Ì è îáîçíà÷àåòñÿ ñèìâîëîì div a :
ρ
div a = lim
∆V → 0 M
1
∆V
ρ
ρ
∫∫ a ⋅ dS
∆S
.
(2.6)
Äèâåðãåíöèÿ âåêòîðíîãî ïîëÿ — ýòî ñêàëÿðíàÿ âåëè÷èíà.
Îíà îáðàçóåò ñêàëÿðíîå ïîëå â äàííîì âåêòîðíîì ïîëå.
ρ
Åñëè â äàííîé òî÷êå âåêòîðíîãî ïîëÿ div a > 0 , òî ãîâîðÿò,
ρ
÷òî â ýòîé òî÷êå åñòü èñòî÷íèê ïîëÿ, à åñëè div a < 0 , òî — ñòîê
ïîëÿ (îòðèöàòåëüíûé èñòî÷íèê).
ρ
Îïðåäåëåíèå. Âåêòîðíîå ïîëå, ó êîòîðîãî div a = 0 â îáëàñòè V,
íàçûâàåòñÿ ñîëåíîèäàëüíûì â ýòîé îáëàñòè.
Äëÿ ïðàêòè÷åñêîãî âû÷èñëåíèÿ äèâåðãåíöèè åå èíâàðèàíòíîå îïðåäåëåíèå (2.6) íåóäîáíî. Áîëåå óäîáíûì äëÿ ýòîãî ÿâëÿåòñÿ âûðàæåíèå äèâåðãåíöèè â êîîðäèíàòíîé ôîðìå. Ïóñòü â äåρ
êàðòîâîé ñèñòåìå êîîðäèíàò âåêòîðíîå ïîëå a èìååò íåïðåðûâíûå ÷àñòíûå ïðîèçâîäíûå
∂ax ∂a y ∂az
,
,
∂x ∂y ∂z ,
ρ
ãäå ax, ay, az — êîìïîíåíòû âåêòîðà a . Òîãäà
ρ ∂a ∂a
∂a
div a = x + y + z .
∂x
∂y
∂z
(2.7)
Çàìå÷àíèå. Ôîðìóëó (2.7) óäîáíî ïðåäñòàâëÿòü â âèäå ñêàëÿðíîãî ïðîèçâåäåíèÿ ñèìâîëè÷åñêîãî âåêòîðà
∇ =  ∂ , ∂ , ∂ 
 ∂x ∂y ∂z 
ρ
(îïåðàòîðà ∇) íà âåêòîð a :
ρ
ρ
div a = ∇ ⋅ a .
34
Ñâîéñòâà äèâåðãåíöèè
ρ
ρ
1. Ïóñòü a è b — äâà âåêòîðíûõ ïîëÿ, òîãäà
ρ
ρ
ρ ρ
div( a + b ) = div a + div b .
ρ
2. Ïóñòü a ( x , y, z ) — âåêòîðíîå ïîëå, à u (x, y, z) — ñêàëÿðíîå ïîëå. Òîãäà
ρ
ρ ρ
div(ua ) = u div a + a ⋅ grad u ,
èëè â ñèìâîëè÷åñêîé çàïèñè
ρ
ρ ρ
∇( ua ) = u∇ ⋅ a + a ⋅ ∇u .
Çàäà÷è
• Íàéòè äèâåðãåíöèþ ñëåäóþùèõ âûðàæåíèé, â êîòîðûõ
ρ
ρ
ρ
a è c — ïîñòîÿííûå âåêòîðû, r — ðàäèóñ-âåêòîð, f (r) —
ñôåðè÷åñêàÿ ñêàëÿðíàÿ ôóíêöèÿ:
ρ
2.38. r ;
ρ
2.39. r / r ;
ρ
2.40. v r ln r ;
2ρ
2.41. r c ;
ρρ ρ
2.42. a ( c ⋅ r ) ;
ρρ ρ
2.43. r ( c ⋅ r ) ;
ρ
2.44. f ( r )c ;
ρ ρ
2.45. v( r × a ) ;
ρ ρ ρ
2.46. v c × ( r × a ) ;
ρ ρ ρ
2.47. v r × ( r × a ) ;
ρ ρ
2.48. r ( r × a ) ;
ρ ρ
2.49. f ( r )( r × a ) .
ρ
2.50. Âû÷èñëèòü äèâåðãåíöèþ ïîëÿ ñêîðîñòåé v òî÷åê
òâåðäîãî òåëà, âðàùàþùåãîñÿ âîêðóã îñè z.
ρ
ρ
ρ
2.51. Âû÷èñëèòü div E , ãäå E = qr ( 4πε 0 r 3 ) — ýëåêòðè÷åñêîå ïîëå òî÷å÷íîãî çàðÿäà q.
ρ
ρ
ρ ρ
2.52. Âû÷èñëèòü div B , ãäå B = kv × r r 3 — ìàãíèòíîå ïîëå
òî÷å÷íîãî çàðÿäà, äâèæóùåãîñÿ ñ ïîñòîÿííîé ñêîðî-
ρ
ñòüþ v .
35
2.53. ßâëÿåòñÿ ëè ñîëåíîèäàëüíûì ïîëåì ãðàäèåíò ñêàëÿðíîé ôóíêöèè ϕ = q ( 4πε 0 r ) (ïîòåíöèàë ïîëÿ òî÷å÷íîãî çàðÿäà q)?
2.54. ßâëÿåòñÿ ëè ñîëåíîèäàëüíûì ïîëåì ãðàäèåíò ñêà-
2.55.
2.56.
2.57.
2.58.
ëÿðíîé ôóíêöèè u = kx 2 2 (óïðóãàÿ ýíåðãèÿ ïðóæèíû æåñòêîñòüþ k)?
ßâëÿåòñÿ ëè ñîëåíîèäàëüíûì ïîëåì ãðàäèåíò ñêàëÿðíîé ôóíêöèè u = ln ρ , ãäå ρ — ðàññòîÿíèå òî÷êè
äî îñè z ?
ρ
Âû÷èñëèòü div(rα r ) . Ïðè êàêîì ÷èñëå α ýòî ïîëå áóäåò ñîëåíîèäàëüíûì?
ρ
Âû÷èñëèòü div f ( r )r , ãäå f (r) — ñôåðè÷åñêàÿ ñêàëÿðíàÿ ôóíêöèÿ. Ïðè êàêîé ôóíêöèè f ýòî ïîëå áóäåò ñîëåíîèäàëüíûì?
ρ
ρ
ρ
ρ
Âû÷èñëèòü div f ( ρ )ρ , ãäå ρ = xe x + ye y . Ïðè êàêîé
ôóíêöèè f ýòî ïîëå áóäåò ñîëåíîèäàëüíûì?
2.59. Äîêàçàòü, ÷òî divgrad f (r ) = f ′′ + 2 f ′ r , ãäå f (r) —
ñôåðè÷åñêîå ñêàëÿðíîå ïîëå.
2.60. Äëÿ êàêèõ ñêàëÿðíûõ ñôåðè÷åñêèõ ôóíêöèé f (r) èõ
ãðàäèåíòû îáðàçóþò ñîëåíîèäàëüíûå ïîëÿ?
2.4. Òåîðåìà Îñòðîãðàäñêîãî
Òåîðåìà Îñòðîãðàäñêîãî î ïðåîáðàçîâàíèè ïîâåðõíîñòíîãî
èíòåãðàëà â îáúåìíûé ÿâëÿåòñÿ îäíîé èç öåíòðàëüíûõ òåîðåì
âåêòîðíîãî àíàëèçà.
Òåîðåìà. Ïóñòü â íåêîòîðîé îáëàñòè ïðîñòðàíñòâà âåêòîðíîå
ρ
ïîëå a ( x, y , z ) èìååò íåïðåðûâíûå ÷àñòíûå ïðîèçâîäíûå
∂ax ∂a y ∂az
,
,
∂x ∂y ∂z .
ρ
Òîãäà ïîòîê ïîëÿ a ÷åðåç ïðîèçâîëüíóþ çàìêíóòóþ
ρ
ïîâåðõíîñòü S ðàâåí èíòåãðàëó îò äèâåðãåíöèè a ïî
îáúåìó V, îãðàíè÷åííîìó ïîâåðõíîñòüþ S:
36
ρ
ρ
ρ
∫∫ a ⋅ dS = ∫∫∫ div adV .
S
V
(2.8)
ρ
Ñëåäñòâèå 1. Åñëè ïîëå a ÿâëÿåòñÿ ñîëåíîèäàëüíûì â îáëàñòè V,
îãðàíè÷åííîé ïîâåðõíîñòüþ S, òî
ρ ρ
∫∫ a ⋅ dS = 0 .
S
Ñëåäñòâèå 2. Ïóñòü â òî÷êå Ì èìååòñÿ èçîëèðîâàííûé èñòî÷íèê
ρ
ρ
ïîëÿ a , ò. å. div a = 0 âñþäó, êðîìå òî÷êè Ì. Òîãäà
ρ
ïîòîê ïîëÿ a ÷åðåç ëþáóþ çàìêíóòóþ ïîâåðõíîñòü,
îõâàòûâàþùóþ òî÷êó Ì, íå çàâèñèò îò ôîðìû ýòîé
ïîâåðõíîñòè.
ρ
Ñëåäñòâèå 3. Ïîòîê ñîëåíîèäàëüíîãî ïîëÿ a ÷åðåç äâå ëþáûå
ïîâåðõíîñòè S1 è S2, îãðàíè÷åííûå îäíèì êîíòóðîì
Ñ, èìååò îäèíàêîâîå çíà÷åíèå ïðè óñëîâèè, ÷òî îáëàñòü ìåæäó S1 è S2 íå èìååò èñòî÷íèêîâ, ò. å. ÷òî â
ρ
ýòîé îáëàñòè div a = 0.
Òåîðåìà Îñòðîãðàäñêîãî ÿâëÿåòñÿ ýôôåêòèâíûì ìåòîäîì
âû÷èñëåíèÿ ïîòîêà, òàê êàê ñâîäèò ïîâåðõíîñòíûé èíòåãðàë îáû÷íî ê áîëåå ïðîñòîìó — îáúåìíîìó.
ρ
Ïðèìåð 1. Âû÷èñëèòü ïîòîê ïîëÿ r = {x , y, z} ÷åðåç çàìêíóòóþ ïîâåðõíîñòü S.
Ðåøåíèå. Íåïîñðåäñòâåííîå âû÷èñëåíèå ïîòîêà çäåñü äîâîëüíî
òðóäîåìêî (ñì. ïðèìåð 2 ðàçä. 2.2, à òàêæå çàäà÷ó 2.19). Òåîðåìà
ρ
Îñòðîãðàäñêîãî ðåøàåò çàäà÷ó ñðàçó, òàê êàê div r = 3 ,
ρ ρ
ρ
r
∫∫ ⋅ dS = ∫∫∫ divrdV = 3V ,
S
V
íåçàâèñèìî îò òîãî, îõâàòûâàåò ïîâåðõíîñòü S íà÷àëî êîîðäèíàò
èëè íåò.
ρ
Ïðèìåð 2. Âû÷èñëèòü ïîòîê ïîëÿ a = {x 2, y 2, z 2} ÷åðåç âåðõíþþ ïîëóñôåðó ñ «äíîì»: x2 + y2 + z2 = R2, z = 0 (z > 0).
37
Ðåøåíèå. Â ñîîòâåòñòâèè ñ ôîðìóëîé (2.8) ïîòîê
Φ = 2∫∫∫ ( x + y + z )dV ,
(2.9)
V
ãäå V — âåðõíåå ïîëóøàðèå ðàäèóñîì R.
Îáúåìíûé èíòåãðàë (2.9) ëåãêî áåðåòñÿ êàê â ñôåðè÷åñêèõ
êîîðäèíàòàõ, òàê è â äåêàðòîâûõ. Âîçüìåì åãî â äåêàðòîâûõ êîîðäèíàòàõ. Äëÿ ýòîãî ðàçîáüåì åãî íà òðè èíòåãðàëà:
I1 = 2∫∫∫ xdV , I2 = 2∫∫∫ ydV , I3 = 2∫∫∫ zdV .
V
V
V
Òàê êàê êîîðäèíàòû x è y ýêâèâàëåíòíû îòíîñèòåëüíî ïîëóøàðèÿ, òî I1 = I2. Ïîýòîìó âû÷èñëèì, íàïðèìåð, òîëüêî I2.
Îáúåìíûé èíòåãðàë I2 ñâåäåòñÿ ê áîëåå ïðîñòîìó, åñëè ýëåìåíò
îáúåìà dV âûðàçèòü êàê ôóíêöèþ y. Äëÿ ýòîãî ðàçîáüåì ïîëóøàð
íà òîíêèå ïîëóäèñêè òîëùèíîé dy, îäèí èç êîòîðûõ ïîêàçàí
íà ðèñ. 6.
Ðèñ. 6
Åãî îáúåì
dV =
πh2dy π ( R2 − y 2 )dy
=
.
2
2
Òîãäà
38
R
I2 = π ∫ ( R2 − y 2 ) ydy = 0 .
2 −R
Äëÿ âû÷èñëåíèÿ èíòåãðàëà I3 ïîëóøàð ðàçáèâàåòñÿ íà òîíêèå äèñêè òîëùèíîé dz, ïåðïåíäèêóëÿðíûå îñè z. Îáúåì òàêîãî
äèñêà, íàõîäÿùåãîñÿ íà ðàññòîÿíèè z îò ïëîñêîñòè x0y,
dV = πh2dz = π (R2 — z2)dz . È òîãäà
R
Φ = I3 = 2∫ π ( R2 − z 2 )zdz =
0
π R4
2 .
ρ
Ïðèìåð 3. Âû÷èñëèòü ïîòîê ïîëÿ a = {x 2 + y 2, y 2 + z 2, z 2 + x 2}
÷åðåç âåðõíþþ ïîëóñôåðó x2 + y2 + z2 = R 2 (z > 0).
Ðåøåíèå. Çàìêíåì ïîëóñôåðó «äíîì» — êðýãîì ðàäèóñà R,
îáðàçîâàâ çàìêíóòóþ ïîâåðõíîñòü S = Sñô + Sêð, ïðè÷åì íîðìàëü
ρ
ê êðóãó îáðàùåíà â ñòîðîíó − e z , à íîðìàëü ê ïîëóñôåðå — â
ñòîðîíó ðîñòà êîîðäèíàòû z , ò. å. âñå íîðìàëè áóäóò âíåøíèìè
ïî îòíîøåíèþ ê çàìêíóòîé ïîâåðõíîñòè S. Òîãäà â ñèëó ñâîéñòâà
àääèòèâíîñòè ïîòîêà ÔS = Ôñô+ Ôêð, îòêóäà èñêîìûé ïîòîê
ρ ρ
ρ ρ
Φсф = Φ S − Φк р = ∫∫ a ⋅ dS − ∫∫ a ⋅ dS .
πR 2
S
Ïåðâûé èíòåãðàë âû÷èñëÿåì ïî òåîðåìå Îñòðîãðàäñêîãî:
ρ ρ
ρ
∫∫ a ⋅ dS = ∫∫∫ divadV = 2∫∫∫ ( x + y + z )dV .
S
V
V
Îí ðàâåí πR /2, êàê ïîêàçàíî â ïðåäûäóùåì ïðèìåðå. Âòîðîé
èíòåãðàë Ôêð âû÷èñëåí â ïðèìåðå 3 ðàçä. 2.2. Ïîñêîëüêó â äàííîì
ρ
ρ
ñëó÷àå íîðìàëü ê êðóãó en = − e z , òî çäåñü
4
ρ
ρ
πR4
.
4
πR
ρ
Òàêèì îáðàçîì, èñêîìûé ïîòîê ïîëÿ a ÷åðåç âåðõíþþ ïîëóñôåðó
∫∫ a ⋅ dS = −
2
π 4 π 4
Φсф = R + R = 3 πR4 .
2
4
4
39
Çàäà÷è
ρ ρ
2.61. Ïîòîê ïîëÿ a = r / r 3 ÷åðåç ñôåðó x2 + y2 + z2 = R2, âû÷èñëåííûé íåïîñðåäñòâåííî, ðàâåí 4π, à ïî òåîðåìå
Îñòðîãðàäñêîãî — íóëþ. Ïî÷åìó?
• Ðåøèòü ñëåäóþùèå çàäà÷è ñ èñïîëüçîâàíèåì òåîðåìû Îñòðîãðàäñêîãî èëè åå ñëåäñòâèé.
ρ ρ
2.62. Âû÷èñëèòü ïîòîê ïîëÿ a = r / r 3 ÷åðåç çàìêíóòóþ ïîâåðõíîñòü x2 + y2 + (z — 2)2 = 1.
ρ 2ρ
2.63. Âû÷èñëèòü ïîòîê ïîëÿ a = r r ÷åðåç ñôåðó
x2 + y2 + z2 = R2.
2.64. Òî÷å÷íûé çàðÿä, äâèæóùèéñÿ ñ ïîñòîÿííîé ñêîðîñρ
òüþ v , ñîçäàåò â îêðóæàþùåì ïðîñòðàíñòâå ìàãíèòρ
ρ ρ
íîå ïîëå B = k ( v × r ) / r 3 , ãäå k — íåêîòîðûé êîýôôèöèåíò. Âû÷èñëèòü ïîòîê ýòîãî ïîëÿ ÷åðåç çàìêíóòóþ ïîâåðõíîñòü x2 + (y — 2)2 + z2 = 1.
ρ
ρ
ρ
ρ
ρ
2.65. Âû÷èñëèòü ïîòîê ïîëÿ a = ρρ , ãäå ρ = xe x + ye y , ÷åðåç öèëèíäðè÷åñêóþ ïîâåðõíîñòü x2 + y2 = R2, 0 ≤ z ≤ h.
ρ
2.66. Âû÷èñëèòü ïîòîê ïîëÿ a = {xy ,2 y,− z} ÷åðåç ñôåðó
x2 + y2 + z2 = 4.
ρ
2.67. Âû÷èñëèòü ïîòîê ïîëÿ a = {x 3, y3, z 3} ÷åðåç ñôåðó
x2 + y2 + z2 = R2.
ρ
2.68. Âû÷èñëèòü ïîòîê ïîëÿ a = {x 3, y3, z 3} ÷åðåç ïîâåðõíîñòü
êóáà 0 ≤ x ≤ l, 0 ≤ y ≤ l, 0 ≤ z ≤ l.
ρ
2.69. Âû÷èñëèòü ïîòîê ïîëÿ a = {x 2, y 2, z 2} ÷åðåç ïîâåðõíîñòü
êóáà -l ≤ x ≤ l, -l ≤ y ≤ l, -l ≤ z ≤ l.
ρ
2.70. Âû÷èñëèòü ïîòîê ïîëÿ a = {2 x , y , z} ÷åðåç çàìêíóòóþ
ïîâåðõíîñòü S : x2 + y2 = z2, z = 4.
ρ
2.71. Âû÷èñëèòü ïîòîê ïîëÿ a = {x, xz , y} ÷åðåç çàìêíóòóþ
ïîâåðõíîñòü S : z = 4 — x2 — y2, z = 0.
ρ
2.72. Âû÷èñëèòü ïîòîê ïîëÿ a = {2 x ,0,− z} ÷åðåç çàìêíóòóþ
ïîâåðõíîñòü S : x2 + y2 = R2, z = 0, z = h.
ρ
2.73. Âû÷èñëèòü ïîòîê ïîëÿ a = { yz , xz , xy} :
40
2.74.
2.75.
2.76.
2.77.
2.78.
2.79.
2.80.
a) ÷åðåç ïîëíóþ ïîâåðõíîñòü öèëèíäðà x2 + y2 ≤ R2,
0 ≤ z ≤ h;
á) ÷åðåç áîêîâóþ ïîâåðõíîñòü ýòîãî öèëèíäðà.
ρ
Âû÷èñëèòü ïîòîê ïîëÿ a = {2 x ,0,− z} ÷åðåç öèëèíäðè÷åñêóþ ïîâåðõíîñòü x2 + y2 = 4, 0 ≤ z ≤ 1. Ïîëîæèòåëüíàÿ ñòîðîíà öèëèíäðà — âíåøíÿÿ.
ρ
Âû÷èñëèòü ïîòîê ïîëÿ a = { y , x , z} ÷åðåç âåðõíþþ ïîëóñôåðó x2 + y2 + z2 = R2 (z ≥ 0).
ρ
Âû÷èñëèòü ïîòîê ïîëÿ a = {x 2, y 2, z 2} ÷åðåç êîíè÷åñêóþ ïîâåðõíîñòü x2 + y2 = z2, 0 ≤ z ≤ h. Ïîëîæèòåëüíàÿ
ñòîðîíà êîíóñà — âíåøíÿÿ.
ρ
Âû÷èñëèòü ïîòîê ïîëÿ a = {x,0, z} ÷åðåç ïîâåðõíîñòü
ïàðàáîëîèäà z = x2 + y2, ëåæàùóþ ìåæäó ïëîñêîñòÿìè z = 0 è z = 4. Ïîëîæèòåëüíàÿ ñòîðîíà ïàðàáîëîèäà
— âíåøíÿÿ.
ρ
Âû÷èñëèòü ïîòîê ïîëÿ a = {2 x,− y ,1 − z} ÷åðåç ÷àñòü
ïàðàáîëîèäà z = 1 — x2 — y2, ëåæàùóþ íàä ïëîñêîñòüþ
x0y. Ïîëîæèòåëüíàÿ ñòîðîíà ïàðàáîëîèäà — âíåøíÿÿ.
ρ
Âû÷èñëèòü ïîòîê ïîëÿ a = {xz, yz,1 − z 2} ÷åðåç ÷àñòü
ïàðàáîëîèäà z = 1 — x2 — y2, ëåæàùóþ íàä ïëîñêîñòüþ
x0y. Ïîëîæèòåëüíàÿ ñòîðîíà ïàðàáîëîèäà — âíåøíÿÿ.
Äîêàçàòü, ÷òî åñëè ñêàëÿðíàÿ ôóíêöèÿ u (x, y, z) ÿâëÿåòñÿ ïîëèíîìîì âòîðîãî ïîðÿäêà, òî äëÿ ïðîèçâîëüíîé çàìêíóòîé ïîâåðõíîñòè S èíòåãðàë
∂u
∫∫ ∂n dS
S
ïðîïîðöèîíàëåí îáúåìó, îãðàíè÷åííîìó S, ëèáî ðàâåí íóëþ.
2.81. Òî÷å÷íûé çàðÿä q, íàõîäÿùèéñÿ â íà÷àëå êîîðäèíàò, ñîçäàåò â îêðóæàþùåì ïðîñòðàíñòâå ýëåêòðèρ
ρ
÷åñêîå ïîëå E = qr ( 4πε 0 r 3 ) , ãäå ε0 — ýëåêòðè÷åñêàÿ
ïîñòîÿííàÿ. Íåïîñðåäñòâåííî è ïî òåîðåìå Îñòðîãðàäñêîãî âû÷èñëèòü ïîòîê ýòîãî ïîëÿ ÷åðåç ïðîèçâîëü41
íóþ çàìêíóòóþ ïîâåðõíîñòü S, îõâàòûâàþùóþ ýòîò
çàðÿä.
2.82. Íåïîñðåäñòâåííî è ïî òåîðåìå Îñòðîãðàäñêîãî âûρ
÷èñëèòü ïîòîê ïîëÿ a = { yz ,− xz , z} ÷åðåç çàìêíóòóþ
ïîâåðõíîñòü S : x2 + y2 = 1, z = 0, z = 1.
2.83. Íåïîñðåäñòâåííî è ïî òåîðåìå Îñòðîãðàäñêîãî âûρ
÷èñëèòü ïîòîê îäíîðîäíîãî ïîëÿ a = {α , β , γ } ÷åðåç
òðåóãîëüíóþ ïëîùàäêó S, âåðøèíû êîòîðîé íàõîäÿòñÿ â òî÷êàõ Ì1 (1, 0, 0), Ì2 (0, 1, 0), Ì3 (0, 0, 1). Ïîëîæèòåëüíàÿ íîðìàëü ê ïëîùàäêå íàïðàâëåíà îò íà÷àëà êîîðäèíàò.
2.84. Äàâëåíèå â æèäêîñòè íà ãëóáèíå h p = p0 + ρgh, ãäå
p0 — àòìîñôåðíîå äàâëåíèå, ρ — ïëîòíîñòü æèäêîñòè, g — óñêîðåíèå ñâîáîäíîãî ïàäåíèÿ. Èñïîëüçóÿ
èíòåãðàëüíûé àíàëîã ôîðìóëû Îñòðîãðàäñêîãî
ρ
∫∫ udS = ∫∫∫ ∇udV ,
S
V
ãäå u — ïðîèçâîëüíîå ñêàëÿðíîå ïîëå, äîêàçàòü, ÷òî
ρ
ρ
ρ
F = − mg , ãäå F — ñèëà, äåéñòâóþùàÿ ñî ñòîðîíû
æèäêîñòè íà ïîãðóæåííîå â íåå òåëî, m — ìàññà
æèäêîñòè, âûòåñíåííîé òåëîì (çàêîí Àðõèìåäà).
2.5. Ðàáîòà
ρ
Îïðåäåëåíèå. Ïóñòü â âåêòîðíîì ïîëå a ( x , y, z ) çàäàíà îðèåíòèðîâàííàÿ êðèâàÿ 1—2. Òîãäà êðèâîëèíåéíûé èíòåãðàë
2
2
ρ ρ
ρ ρ
A = ∫ (a ⋅ eτ )dl = ∫ a ⋅ dl
1
(2.10)
1
ρ
íàçûâàåòñÿ ðàáîòîé âåêòîðíîãî ïîëÿ a âäîëü êðèρ
âîé 1—2; çäåñü eτ — åäèíè÷íûé êàñàòåëüíûé âåêòîð
ρ ρ
ê êðèâîé 1—2 íà åå ýëåìåíòå dl, dl = eτ dl — îðèåíòèðîâàííûé ýëåìåíò êðèâîé 1—2.
Ðàáîòà À ÿâëÿåòñÿ âåëè÷èíîé ñêàëÿðíîé è àëãåáðàè÷åñêîé,
ò. å. îíà ìîæåò áûòü áîëüøå íóëÿ, ðàâíà íóëþ è ìåíüøå íóëÿ.
42
Ïðèìåð 1. Ïóñòü ñïóòíèê ëåòàåò âîêðóã Çåìëè ïî êðóãîâîé
îðáèòå. Òîãäà â êàæäîé òî÷êå åãî òðàåêòîðèè äåéñòâóþùàÿ íà
ρ
íåãî ñèëà òÿæåñòè F ïåðïåíäèêóëÿðíà ýëåìåíòó åãî òðàåêòîðèè
ρ
ρ ρ
dl , ò.å. F ⋅ dl = 0 . Ñëåäîâàòåëüíî, ðàáîòà ñèëû òÿæåñòè
ρ ρ
A = ∫ F ⋅ dl = 0
2
1
ρ
íà ëþáîì ó÷àñòêå òðàåêòîðèè, õîòÿ ïîëå F ( x , y , z ) ≠ 0 .
Ïðèìåð 2. Ïðè äâèæåíèè òåëà ââåðõ ðàáîòà ñèëû òÿæåñòè
ρ
îòðèöàòåëüíà, òàê êàê ñìåùåíèå dl àíòèïàðàëëåëüíî ñèëå òÿæåρ
ρ ρ
ñòè mg : mg ⋅ dl < 0 .
Åñëè êðèâàÿ 1—2 çàìêíóòà, ò. å. îáðàçóåò íåêîòîðûé îðèåíòèðîâàííûé êîíòóð Ñ, òî êðèâîëèíåéíûé èíòåãðàë (2.10) íàρ
çûâàåòñÿ öèðêóëÿöèåé ïîëÿ a ïî êîíòóðó Ñ è îáîçíà÷àåòñÿ òàê:
ρ ρ
A = ∫ a ⋅ dl .
C
Òàê êàê â äåêàðòîâûõ êîîðäèíàòàõ
ρ
a = {ax , a y , az} ,
ρ
dl = {dx, dy, dz} , òî ðàáîòó (2.10) ìîæíî ïðåäñòàâèòü â âèäå
2
ρ ρ 2
A = ∫ a ⋅ dl = ∫ ax ( x, y, z )dx + a y ( x, y, z )dy + az ( x, y, z )dz . (2.11)
1
1
(
)
Ñâîéñòâà ðàáîòû
1. Ïðè ñìåíå íàïðàâëåíèÿ èíòåãðèðîâàíèÿ ðàáîòà ìåíÿåò çíàê:
2
ρ ρ
∫ a ⋅ dl
1
1
ρ ρ
= −∫ a ⋅ dl ;
2
Ýòî ñëåäóåò èç òîãî, ÷òî ïðè ñìåíå îðèåíòàöèè ýëåρ
ρ ρ
ìåíòà dl ñêàëÿðíîå ïðîèçâåäåíèå a ⋅ dl ìåíÿåò çíàê.
43
ρ ρ
2. Ïóñòü a è b — êàêèå-ëèáî âåêòîðíûå ïîëÿ, à p è q —
äåéñòâèòåëüíûå ÷èñëà, òîãäà
2
ρ ρ 2ρ ρ
ρ ρ
ρ
∫ ( pa + qb ) ⋅ dl = p∫ a ⋅ dl + q ∫ b ⋅ dl .
2
1
1
1
Ýòî ñâîéñòâî íàçûâàåòñÿ ëèíåéíîñòüþ ðàáîòû.
3. Åñëè êðèâàÿ 1—3 ðàçáèòà íà äâà ó÷àñòêà 1—2 è 2—3,
òî
3
ρ ρ
2
ρ ρ
3
ρ ρ
∫ a ⋅ dl = ∫ a ⋅ dl + ∫ a ⋅ dl .
1
1
2
Ýòî ñâîéñòâî íàçûâàåòñÿ àääèòèâíîñòüþ ðàáîòû.
Âû÷èñëåíèå ðàáîòû
Äëÿ âû÷èñëåíèÿ êðèâîëèíåéíîãî èíòåãðàëà (2.10) íàäî
âûðàçèòü êîîðäèíàòû òî÷êè íà êðèâîé 1—2 ôóíêöèÿìè êàêîãîëèáî îäíîãî ïàðàìåòðà, è òîãäà çàäà÷à ñâåäåòñÿ ê âû÷èñëåíèþ
ïðîñòîãî èíòåãðàëà. Îáû÷íî êðèâàÿ 1—2 çàäàåòñÿ îäíèì èç ñëåäóþùèõ äâóõ ñïîñîáîâ.
Ñïîñîá 1. Êðèâàÿ 1—2 çàäàíà ïàðàìåòðè÷åñêè:
x = x(ϕ), y = y (ϕ), z = z (ϕ),
ïðè÷åì ïàðàìåòð ϕ íåïðåðûâíî ìåíÿåòñÿ îò ϕ1
â òî÷êå 1 äî ϕ2 â òî÷êå 2. Òîãäà, ó÷èòûâàÿ, ÷òî
dx = x ′dϕ , dy = y ′dϕ , dz = z ′dϕ ,
âìåñòî êðèâîëèíåéíîãî èíòåãðàëà (2.11) ïîëó÷àåì
ïðîñòîé:
A=
ϕ2
∫ [a x ( x(ϕ ), y (ϕ ), z (ϕ )) x ′ + a y ( x(ϕ ), y (ϕ ), z (ϕ )) y ′ + a z ( x(ϕ ), y(ϕ ), z (ϕ ))z ′]dϕ.
ϕ1
Ñïîñîá 2.
Êðèâàÿ 1—2 çàäàíà ñèñòåìîé óðàâíåíèé y = y(x),
z = z (x), ïðè÷åì êîîðäèíàòà x íåïðåðûâíî ìåíÿåòñÿ
îò x1 â òî÷êå 1 äî x2 â òî÷êå 2. Òîãäà, ó÷èòûâàÿ, ÷òî
dy = y ′dx , dz = z ′dx , âìåñòî êðèâîëèíåéíîãî èíòåãðàëà (2.11) ïîëó÷àåì ïðîñòîé:
44
A=
x2
∫ [ax ( x, y( x ), z( x )) + a y ( x, y( x ), z( x )) y ′ + az ( x, y( x ), z( x ))z ′]dx .
x1
ρ
Ïðèìåð 3. Âû÷èñëèòü ðàáîòó âåêòîðíîãî ïîëÿ r = {x, y} âäîëü
ïðàâîé âåðõíåé ÷åòâåðòè ýëëèïñà x2/a2 + y2/b2 = 1 îò òî÷êè (0, b)
äî (a, 0).
Ðåøåíèå 1. Äàííûé ýëëèïñ ìîæíî çàäàòü ïàðàìåòðè÷åñêè:
x = acosϕ, y = bsinϕ. Òîãäà: dx = -asinϕdϕ, dy = bcosϕdϕ, è ðàáîòà
2
ρ ρ 2
A = ∫ r ⋅ dl = ∫ ( xdx + ydy ) =
1
1
0
2
2
( −a 2 sin ϕ cos ϕ + b2 sin ϕ cos ϕ )dϕ = a − b .
2
π /2
∫
Ðåøåíèå 2. Èç êàíîíè÷åñêîãî óðàâíåíèÿ ýëëèïñà äëÿ åãî
ïåðâîé ÷åòâåðòè èìååì:
y = b 1 − x2 a2 .
Òîãäà
dy = −
b
xdx
⋅
a2 1 − x2 a2 ,
è ðàáîòà
2
a
b2
a 2 − b2
A = ∫ ( xdx + ydy ) = ∫  x − 2 x dx =


2 .
a
1
0
Ïðèìåð 4. Âû÷èñëèòü ðàáîòó ýëåêòðè÷åñêîãî ïîëÿ òî÷å÷íîρ
ρ
ãî çàðÿäà E = kr / r 3 âäîëü ïðîèçâîëüíîé êðèâîé 1—2.
Ðåøåíèå. Ïóñòü x = x (ϕ), y = y (ϕ), z = z (ϕ) — ïàðàìåòðè÷åñêèå óðàâíåíèÿ êðèâîé 1—2. Òîãäà ðàáîòà
ϕ2
2
y
A = ∫ ( Ex dx + E y dy + Ez dz ) = ∫ k  x3 x ′ + 3 y ′ + z3 z ′ dϕ =
r
r 
r
1
ϕ
1
ϕ2
r2
1
1
2


= k ∫ 1 3 d ( x 2 + y 2 + z 2 )dϕ = k ∫ dr 3 = k  1 − 1  .
ϕ
2
2
r
d
r
 r1 r2 
r
ϕ
45
Âèäíî, ÷òî ðàáîòà òàêîãî ïîëÿ íå çàâèñèò îò ôîðìû êðèâîé
1—2, à òîëüêî îò ðàññòîÿíèÿ íà÷àëüíîé è êîíå÷íîé òî÷åê äî
íà÷àëà êîîðäèíàò.
ρ
Ïðèìåð 5. Âû÷èñëèòü öèðêóëÿöèþ ïîëÿ a = {− y , x} âäîëü
îêðóæíîñòè (x — h)2 + y2 = R2.
Ðåøåíèå. Çàäàäèì îêðóæíîñòü (x — h)2 + y2 = R2 ïàðàìåòðè÷åñêè: x = h + Rcosϕ, y = Rsinϕ (ðèñ. 7). Òîãäà èñêîìàÿ öèðêóëÿöèÿ áóäåò ðàâíà:
∫ (ax dx + a y dy ) =
2π
∫ ( R2 sin 2 ϕdϕ + ( h + R cos ϕ ) R cos ϕdϕ ) =
0
2π
= ∫ ( R2 + hR cos ϕ )dϕ = 2πR2 .
0
Ðèñ. 7
ρ
Ïðèìåð 6. Âû÷èñëèòü ðàáîòó ïîëÿ a = { y , x , x + y + z} îò òî÷êè Ì1 (3, 4, 0) äî Ì2 (0, 0, 5) ïî ïðÿìîé.
Ðåøåíèå. Êàíîíè÷åñêîå óðàâíåíèå äàííîé ïðÿìîé èìååò âèä:
x −3 y −4 z −0
.
=
=
0−3 0−4 5−0
Îòñþäà
y=
4
5
4
5
x , z = 5 − x , dy = dx , dz = − dx .
3
3
3
3
È òîãäà ðàáîòà
A=
M2
0
M1
3
4
4

4
5   5 
∫ ( ydx + xdy + ( x + y + z )dz) = ∫  3 x + 3 x +  x + 3 x + 5 − 3 x  − 3  dx = 18.
46
Çàäà÷è
ρ
2.85. Âû÷èñëèòü ðàáîòó ïîëÿ a = {x 2, y 2, z 2} îò òî÷êè
Ì1 (0, 0, 0) äî Ì2 (1, 1, 1) ïî ïðÿìîé.
ρ
2.86. Âû÷èñëèòü ðàáîòó ïîëÿ a = {− y , x} âäîëü âåðõíåé ïîëîâèíû ýëëèïñà x2/a2 + y2/b2 = 1 ñëåâà íàïðàâî.
ρ
2.87. Âû÷èñëèòü ðàáîòó ïîëÿ a = {x 2, xy} îò òî÷êè Ì1 (0, 1)
äî Ì2 (1, 0):
a) ïî ïðÿìîé;
á) ïî äóãå îêðóæíîñòè x2 + y2 = 1;
â) ïî ïàðàáîëå y = (1 — x)2;
ã) ïî êîîðäèíàòíûì îñÿì.
ρ
2.88. Âû÷èñëèòü ðàáîòó ïîëÿ a = {x 2 − 2 xy, y 2 − 2 xy} îò òî÷êè Ì1 (-1, 1) äî Ì2 (1, 1):
a) ïî ïàðàáîëå y = x2;
á) ïî ïðÿìîé.
ρ
2.89. Âû÷èñëèòü ðàáîòó ïîëÿ a = {−ωy , ωx ,0} :
à) îò òî÷êè 1 äî 2 (ðèñ. 8) ïî âèíòîâîé ëèíèè
x = Rcosϕ, y = Rsinϕ, z = hϕ/(2π);
á) îò òî÷êè 1 äî 3 ïî ïóòè 1—2—3 (ðèñ. 8);
â) îò òî÷êè 1 äî 3 ïî ïðÿìîé;
ã) îò òî÷êè 1 äî 3 ïî ïóòè 1—2—0—3 (ðèñ. 8).
Ðèñ. 8
47
ρ ρ
2.90. Âû÷èñëèòü ðàáîòó ïîëÿ a = r âäîëü ãèïåðáîëû
x2 — y2 = 9 îò òî÷êè Ì1 (3, 0) äî Ì2 (5, 4).
ρ ρ
2.91. Âû÷èñëèòü ðàáîòó ïîëÿ a = r âäîëü ïîëóêóáè÷åñêîé
ïàðàáîëû c2x3 — y2 = 0 îò òî÷êè Ì1 (0, 0) äî Ì2 (1, ñ).
ρ ρ
2.92. Âû÷èñëèòü ðàáîòó ïîëÿ a = r / r 3 âäîëü ïðîèçâîëüíîé
êðèâîé 1•—2 ñ çàäàííûìè êîîðäèíàòàìè íà÷àëüíîé
è êîíå÷íîé òî÷åê.
2.93. Äîêàçàòü, ÷òî ðàáîòà âñÿêîãî öåíòðàëüíîãî ïîëÿ
ρ
ρ
a = f ( r )r îò òî÷êè 1 äî 2 íå çàâèñèò îò ôîðìû òðàåêòîðèè 1—2, à òîëüêî îò êîîðäèíàò íà÷àëüíîé è
êîíå÷íîé òî÷åê.
ρ
2.94. Âû÷èñëèòü öèðêóëÿöèþ ïîëÿ a = { y + x, y − x}
ïî îêðóæíîñòè x2 + y2 = R2, îáõîäÿ åå ïî ÷àñîâîé ñòðåëêå.
ρ
2.95. Âû÷èñëèòü öèðêóëÿöèþ ïîëÿ a = { y, x 2,− z} ïî îêðóæíîñòè x2 + y2 = R2, z = h, îáõîäÿ åå ïî ïðàâîìó âèíòó
îòíîñèòåëüíî îñè z .
ρ
2.96. Âû÷èñëèòü ðàáîòó ïîëÿ a = {x 2 − 2 xy, y 2 − 2 xy} îò òî÷êè Ì1 (-1, 1) äî Ì2 (1, 1) ïî ïàðàáîëå y = x2.
2.97. Âû÷èñëèòü ðàáîòó ïîëÿ
ρ  y 2
− x 2 
a= 2
, 2

2
x + y 2 
 x + y
îò òî÷êè Ì1 (R, 0) äî M2 (-R, 0) ïî îêðóæíîñòè
x2 + y2 = R2.
2.98. Ïðÿìîé áåñêîíå÷íî äëèííûé ïðîâîä ñ òîêîì, íàïðàâëåííûé âäîëü îñè z , ñîçäàåò â îêðóæàþùåì ïðîρ
ñòðàíñòâå ìàãíèòíîå ïîëå B = k{− y / ρ 2, x / ρ 2,0} , ãäå k
— íåêîòîðûé êîýôôèöèåíò, ρ 2 = x2 + y2. Âû÷èñëèòü
öèðêóëÿöèþ ýòîãî ïîëÿ ïî ïðîèçâîëüíîìó ïëîñêîìó êîíòóðó Ñ, îõâàòûâàþùåìó îñü z â ïëîñêîñòè
z = 0. Îáõîä — ïî ïðàâîìó âèíòó îòíîñèòåëüíî îñè z .
ρ
2.99. Âû÷èñëèòü öèðêóëÿöèþ ïîëÿ a = {− y 3, x 3} ïî ýëëèïñó x2/a2 + y2/b2 = 1, îáõîäÿ åãî ïðîòèâ ÷àñîâîé ñòðåëêè.
48
ρ
2.100. Âû÷èñëèòü öèðêóëÿöèþ ïîëÿ a = { y,− x} ïî êîíòóðó
Ñ, îáðàçîâàííîìó ïåðâîé ÷åòâåðòüþ àñòðîèäû
x2/3 + y2/3 = R2/3 (x ≥ 0, y ≥ 0) è îñÿìè êîîðäèíàò. Îáõîä
êîíòóðà — ïðîòèâ ÷àñîâîé ñòðåëêè.
2.101. Äîêàçàòü, ÷òî öèðêóëÿöèÿ ãðàäèåíòà ñêàëÿðíîãî ïîëÿ
u (x, y, z) ðàâíà íóëþ.
ρ
2.102. Âû÷èñëèòü öèðêóëÿöèþ ïîëÿ a = {2 xz ,− y , z} ïî êîíòóðó, îáðàçîâàííîìó ïåðåñå÷åíèåì ïëîñêîñòè
x + y + 2z = 2 ñ êîîðäèíàòíûìè ïëîñêîñòÿìè. Îáõîä
— â íàïðàâëåíèè ÷åðåäîâàíèÿ îñåé x → y → z → x.
ρ
ρ
2.103. Âû÷èñëèòü öèðêóëÿöèþ ïîëÿ a = z 2ex ïî êîíòóðó,
îáðàçîâàííîìó ïåðåñå÷åíèåì ñôåðû x2 + y2 + z2 = 16 ñ
êîîðäèíàòíûìè ïëîñêîñòÿìè (x ≥ 0, y ≥ 0, z ≥ 0). Îáõîä — â íàïðàâëåíèè ÷åðåäîâàíèÿ îñåé x → y → z → x.
ρ
2.104. Âû÷èñëèòü öèðêóëÿöèþ ïîëÿ a = {2 x + z ,2 y − z , xyz}
ïî êîíòóðó, îáðàçîâàííîìó ïåðåñå÷åíèåì ïàðàáîëîèäà âðàùåíèÿ x2 + y2 = 1 — z ñ êîîðäèíàòíûìè ïëîñêîñòÿìè (x ≥ 0, y ≥ 0, z ≥ 0). Îáõîä — â íàïðàâëåíèè
÷åðåäîâàíèÿ îñåé x → y → z → x.
ρ
2.105. Âû÷èñëèòü öèðêóëÿöèþ ïîëÿ a = { y 2 , z 2 ,0} ïî êîíòóðó, îáðàçîâàííîìó ïåðåñå÷åíèåì ïîâåðõíîñòåé
x2 + y2 = 9 è 3y + 4z = 5.
ρ
2.106. Âû÷èñëèòü öèðêóëÿöèþ ïîëÿ a = { y,− x, z} ïî êîíòóðó x2 + y2 + z2 = R2, x = z. Îáõîä — ïî ïðàâîìó âèíòó
îòíîñèòåëüíî îñè z.
ρ
2.107. Âû÷èñëèòü öèðêóëÿöèþ ïîëÿ a = { y ,− x, z} ïî êîíòóðó, îáðàçîâàííîìó ïåðåñå÷åíèåì ïîâåðõíîñòåé
x2 + y2 + z2 = R2 è x2 + y2 = z2 (z > 0). Îáõîä — ïî ïðàâîìó
âèíòó îòíîñèòåëüíî îñè z.
ρ
2.108. Âû÷èñëèòü öèðêóëÿöèþ ïîëÿ a = { y 2, z 2, x 2} ïî êîíòóðó, îáðàçîâàííîìó ïåðåñå÷åíèåì ïîâåðõíîñòåé
x2 + y2 + z2 = R2 è x2 + y2 = Rz (z > 0).
ρ
2.109. Âû÷èñëèòü öèðêóëÿöèþ ïîëÿ a = {xy , yz , xz} ïî êîíòóðó, îáðàçîâàííîìó ïåðåñå÷åíèåì öèëèíäðà x2 + y2 = 1
49
è ïëîñêîñòè x + y + z = 1. Îáõîä — ïî ïðàâîìó âèíòó
îòíîñèòåëüíî îñè z .
2.6. Ðîòîð. Ïðàâèëà ðàáîòû ñ îïåðàòîðîì ∇
Îïðåäåëåíèå. Ïóñòü â äåêàðòîâîé ñèñòåìå êîîðäèíàò çàäàíî âåêρ
òîðíîå ïîëå a ( x , y, z ) ñ íåïðåðûâíî äèôôåðåíöèðóåìûìè êîìïîíåíòàìè ax, ay, az. Òîãäà âåêòîð, îáîçíàρ
÷àåìûé ñèìâîëîì rot a è îïðåäåëÿåìûé âûðàæåíèåì
ρ
ex
ρ
rot a = ∂ ∂ x
ax
ρ
ey
∂ ∂y
ay
ρ
ez
∂a y  ρ  ∂a x ∂a z  ρ  ∂a y ∂a x  ρ
 ∂a
−
−
∂ ∂z =  z −
e +
e ,(2.12)
e +
∂ z  x  ∂ z
∂ x  y  ∂ x
∂ y  z
 ∂y
az
íàçûâàåòñÿ ðîòîðîì âåêòîðíîãî ïîëÿ aρ â äåêàðòîâîé
ñèñòåìå êîîðäèíàò.
ρ
Ðîòîð ÿâëÿåòñÿ âíóòðåííåé õàðàêòåðèñòèêîé ïîëÿ a â äàííîé òî÷êå è âûðàæàåò ñïîñîáíîñòü ïîëÿ ñîâåðøàòü ðàáîòó ïî
ìàëîìó êîíòóðó âáëèçè ýòîé òî÷êè.
Îïðåäåëåíèå. Åñëè âî âñåé îáëàñòè ñóùåñòâîâàíèÿ âåêòîðíîãî ïîëÿ
ρ
ρ
a rot a ≡ 0 , òî ïîëå íàçûâàåòñÿ áåçâèõðåâûì. Åñëè æå
ρ
ρ
rot aρ ≠ 0 , òî ïîëå a íàçûâàåòñÿ âèõðåâûì.
âåêòîðíîå ïîëå,
Âåêòîð rot a îáðàçóåò â ïðîñòðàíñòâå íîâîå
ρ
a
ïîðîæäåííîå èñõîäíûì âåêòîðíûì
ïîëåì
.
Êàê
è äëÿ âñÿêîãî
ρ
âåêòîðíîãî ïîëÿ, äëÿ ïîëÿ rot a ìîæíî íàéòè åãî ðîòîð è äèρ
ρ
âåðãåíöèþ, ò. å. âûïîëíèòü îïåðàöèè rot(rot a ) è div(rot a ) . Òàê,
íàïðèìåð,
ρ
∂  ∂az − ∂a y  + ∂  ∂ax − ∂az  + ∂  ∂a y − ∂ax  = 0
div(rot a ) =


∂x  ∂y
∂z  ∂y  ∂z
∂x  ∂z  ∂x
∂y 
(ïîñëå ðàñêðûòèÿ ñêîáîê âñå ñëàãàåìûå çäåñü ïîïàðíî óíè÷òîæàρ
þòñÿ). Òàêèì îáðàçîì, äëÿ ëþáîãî âåêòîðíîãî ïîëÿ a ñïðàâåäëèâî òîæäåñòâî:
ρ
(2.13)
div(rot a ) ≡ 0.
Ýòî îäíî èç çàìå÷àòåëüíûõ òîæäåñòâ âåêòîðíîãî àíàëèçà.
50
Ïðàâèëà ðàáîòû ñ îïåðàòîðîì ∇
Îïåðàöèè âåêòîðíîãî àíàëèçà «grad», «div» è «rot» óäîáíî
ïðîèçâîäèòü è çàïèñûâàòü â ñîêðàùåííîé ôîðìå ñ ïîìîùüþ
äèôôåðåíöèàëüíîãî îïåðàòîðà ∇ (íàáëà):
∇ = {∂ ∂x , ∂ ∂y , ∂ ∂z} ,
êîòîðûé â ðàìêàõ âåêòîðíîé àëãåáðû ðàáîòàåò êàê ôîðìàëüíûé
âåêòîð, õîòÿ ñàì ïî ñåáå îí âåêòîðîì íå ÿâëÿåòñÿ, ò. å. íå èìååò
íè âåëè÷èíû, íè íàïðàâëåíèÿ. Ïðèåìû ðàáîòû ñ îïåðàòîðîì ∇
íàçûâàþòñÿ ñèìâîëè÷åñêèì ìåòîäîì ðàñ÷åòîâ.
 ñèìâîëè÷åñêîì ìåòîäå îïåðàòîð ∇ íàäåëÿåòñÿ ñëåäóþùèìè
ñâîéñòâàìè:
1. Îïåðàòîð ∇ íå äåéñòâóåò íà âåëè÷èíû, ñòîÿùèå ñëåâà îò íåãî.
2. Äåéñòâèå îïåðàòîðà ∇ íà ñêàëÿðíóþ ôóíêöèþ u (x, y, z)
ýêâèâàëåíòíî îïåðàöèè «grad», ò. å.




∇u =  ∂ , ∂ , ∂ u =  ∂u , ∂u , ∂u  = grad u .
(2.14)
 ∂x ∂y ∂z 
 ∂x ∂y ∂z 
ρ
3. Íà âåêòîðíóþ âåëè÷èíó a = { y , x , z} îïåðàòîð ∇ ìîæåò äåéñòâîâàòü äâîÿêî — «ñêàëÿðíî» è «âåêòîðíî»;
ñîîòâåòñòâóþùèå äåéñòâèÿ ýêâèâàëåíòíû îïåðàöèÿì
«div» è «rot»:
ρ 
ρ
∂a ∂a ∂a

∇ ⋅ a =  ∂ , ∂ , ∂  ⋅ ax , a y , az = x + y + z = div a ; (2.15)
∂
∂
∂
∂
∂
∂
x
y
z
x
y
z


{
}
ρ 
ρ

∇ × a =  ∂ , ∂ , ∂  × ax , a y , az = rot a ,
 ∂x ∂y ∂z 
{
}
(2.16)
ò. å. â ýòèõ îïåðàöèÿõ îïåðàòîð ∇ ïðîÿâëÿåò êàê äèôôåðåíöèàëüíûå, òàê è âåêòîðíûå ñâîéñòâà.
4. Åñëè îïåðàòîð ∇ äåéñòâóåò íà íåñêîëüêî ñòîÿùèõ ïîñëå
íåãî âåëè÷èí, òî íàäî ó÷èòûâàòü åãî äèôôåðåíöèàëüíóþ ïðèðîäó, ò. å. åãî èñïîëüçîâàíèå äîëæíî ïîä÷èíÿòüñÿ ïðàâèëàì äèôôåðåíöèðîâàíèÿ ñóììû èëè
ïðîèçâåäåíèÿ ñêàëÿðíûõ èëè âåêòîðíûõ âåëè÷èí. Òàê,
51
íàïðèìåð, åñëè u è v — äâà ñêàëÿðíûõ ïîëÿ, òî
∇(uv) = v∇u + u∇v.
5. Åñëè îïåðàòîð ∇ äåéñòâóåò íà êàêîå-ëèáî ïðîèçâåäåíèå ñ ó÷àñòèåì âåêòîðíîé âåëè÷èíû, òî ñíà÷àëà ó÷èòûâàåòñÿ åãî äèôôåðåíöèàëüíûé õàðàêòåð, à çàòåì
óæå âåêòîðíûé.
6. Åñëè â ñëîæíîì âûðàæåíèè îïåðàòîð ∇ äåéñòâóåò òîëüêî íà îäíó èç âåëè÷èí, òî îíà îòìå÷àåòñÿ èíäåêñîì
ó îïåðàòîðà ∇, êîòîðûé â îêîí÷àòåëüíîì âûðàæåíèè
ñíèìàåòñÿ.
7. Âñå âåëè÷èíû, íà êîòîðûå îïåðàòîð ∇ íå äåéñòâóåò,
â îêîí÷àòåëüíîì ðåçóëüòàòå ñòàâÿòñÿ âïåðåäè íåãî.
ρ
Ïðèìåð 1. Ïóñòü u(x,y,z) — ñêàëÿðíîå ïîëå, a ( x , y, z ) —
âåêòîðíîå ïîëå. Òîãäà
ρ
ρ
ρ
ρ
ρ
ρ
div( ua ) = ∇ ⋅ ( ua ) = ∇ a ( ua ) + ∇ u ( ua ) = u( ∇ a ⋅ a ) + (∇ u u ) ⋅ a =
ρ ρ
ρ ρ
u( ∇ ⋅ a ) + a ⋅ ( ∇u ) = u div a + a ⋅ grad u .
Ïðèìåð 2.
ρ
ρ
ρ
ρ
rot( ua ) = ∇ × ( ua ) = ∇ a × ( ua ) + ∇ u × ( ua ) =...
Òåïåðü ðàáîòàåì ïî ïðàâèëàì âåêòîðíîé àëãåáðû, ïåðåìåùàÿ
ñêàëÿð u ëèáî ïîä «æäóùèé» åãî îïåðàòîð ∇, ëèáî âûíîñÿ åãî
çà ∇ âëåâî:
ρ
ρ
ρ ρ
... = u( ∇ a × a ) + ( ∇ u u ) × a = u rot a − a × grad u .
(Çäåñü ó÷òåíà àíòèêîììóòàòèâíîñòü âåêòîðíîãî ïðîèçâåäåíèÿ).
Ïðèìåð 3.
ρ ρ
ρ ρ
ρ ρ
ρ ρ
div( a × b ) = ∇ ⋅ ( a × b ) = ∇ a ⋅ ( a × b ) + ∇ b ⋅ ( a × b ) =...
Òåïåðü èñïîëüçóåì âåêòîðíûé õàðàêòåð îïåðàòîðà ∇, ò. å. ïðàâèëà
ðàáîòû ñî ñìåøàííûì ïðîèçâåäåíèåì òðåõ âåêòîðîâ, ïîäâîäÿ
ρ
ρ
âåêòîðû a èëè b ïîä «æäóùèé» èõ îïåðàòîð ∇ è ìåíÿÿ ìåñòàìè
îïåðàöèè «⋅» è «×»:
ρ ρ ρ
ρ ρ
ρ
ρ ρ
ρ ρ
ρ ρ
... = (∇ a × a ) ⋅ b − (∇ b × b ) ⋅ a = b ⋅ (∇ × a ) − a ⋅ (∇ × b ) = b ⋅ rot a − a ⋅ rot b.
52
(Çäåñü ó÷òåíà ñìåíà çíàêà ñìåøàííîãî ïðîèçâåäåíèÿ ïðè èçìåíåíèè ïîðÿäêà ñîìíîæèòåëåé).
Ìîæíî óáåäèòüñÿ, ÷òî ïîêîîðäèíàòíîå âû÷èñëåíèå îïåðàρ
ρ ρ
öèé, íàïðèìåð rot( ua ) èëè div( a × b ) , ïðèâîäèò ê òåì æå ðåçóëüòàòàì, íî ÿâëÿåòñÿ íåñðàâíåííî áîëåå ãðîìîçäêèì è
òðóäîåìêèì.
Åñëè ê âûðàæåíèÿì (2.14)—(2.16) ïðèìåíèòü îïåðàòîð ∇
ïîâòîðíî, òî ïîëó÷èì äèôôåðåíöèàëüíûå îïåðàöèè âòîðîãî
ïîðÿäêà.
Ïðèìåð 4.
∇ ⋅ ∇u = div(grad u) = ( ∇ ⋅ ∇ )u = ∇ 2 u = ∆u ,
ãäå
2
2
2

 

∆ = ∇2 =  ∂ , ∂ , ∂  ⋅  ∂ , ∂ , ∂  = ∂ 2 + ∂ 2 + ∂ 2
∂y ∂z
 ∂x ∂y ∂z   ∂x ∂y ∂z  ∂x
— äèôôåðåíöèàëüíûé îïåðàòîð âòîðîãî ïîðÿäêà, íàçûâàåìûé
îïåðàòîðîì Ëàïëàñà.
Ïðèìåð 5.
ρ
ρ
ρ
∇ ⋅ (∇ × a ) = div(rot a ) = (∇ × ∇) ⋅ a ≡ 0 .
Çäåñü èñïîëüçóåòñÿ òî, ÷òî âåêòîðíîå ïðîèçâåäåíèå äâóõ îäèíàêîâûõ âåêòîðîâ (õîòÿ è ôîðìàëüíûõ) ðàâíî íóëþ. Ýòî çàìå÷àòåëüíîå òîæäåñòâî ïîëó÷åíî ðàíåå [ôîðìóëà (2.13)] ïðÿìûì ïîêîîðäèíàòíûì äèôôåðåíöèðîâàíèåì.
Ïðèìåð 6.
∇ × (∇u ) = rot (grad u ) = (∇ × ∇ )u ≡ 0 .
Ýòî åùå îäíî çàìå÷àòåëüíîå òîæäåñòâî âåêòîðíîãî àíàëèçà, è
åãî òàê æå ëåãêî ïðîâåðèòü ïîêîîðäèíàòíûì äèôôåðåíöèðîâàíèåì, êàê è (2.13).
Òàêèì îáðàçîì, èñïîëüçîâàíèå ïðàâèë ðàáîòû ñ îïåðàòîðîì ∇ çíà÷èòåëüíî ñîêðàùàåò îáúåì âû÷èñëåíèé, ïðè÷åì åñëè
ðå÷ü èäåò î âû÷èñëåíèÿõ ãðàäèåíòà, äèâåðãåíöèè èëè ðîòîðà îò
ðàçëè÷íûõ êîìáèíàöèé ñêàëÿðíûõ è âåêòîðíûõ ïîëåé, òî ðåçóëüòàòû áóäóò âñåãäà ïðàâèëüíûìè. Îäíàêî, âîîáùå ãîâîðÿ,
ïðè èññëåäîâàíèÿõ ðàçëè÷íûõ ñâîéñòâ ïîëåé ðàáîòàòü ñ îïåðàòî-
53
ðîì ∇ ñëåäóåò ñ îñòîðîæíîñòüþ, òàê êàê ðåçóëüòàò èíîãäà ïðèâîäèò ê íåâåðíûì âûâîäàì. Ïîýòîìó ïðè ñîìíåíèè â ïðàâèëüíîñòè
òàêèõ âûâîäîâ èõ íàäî ïðîâåðÿòü íà ïðîñòûõ ÷àñòíûõ âàðèàíòàõ
èëè æå ïðÿìûì ïîêîîðäèíàòíûì äèôôåðåíöèðîâàíèåì, õîòü ýòî
ïîðîé è ãðîìîçäêî.
Ïðèìåð 7. Â ñîîòâåòñòâèè ñ ïðàâèëàìè âåêòîðíîé àëãåáðû
( ∇u ) × ( ∇v ) = ( ∇ × ∇ )uv = 0 ,
îäíàêî ÿñíî, ÷òî â îáùåì ñëó÷àå ýòî íåâåðíî.
Ïðèìåð 8. Ôîðìàëüíî
ρ
ρ ρ
ρ
a ⋅ rot a = a ⋅ (∇ × a ) = 0 ,
òàê êàê â ñìåøàííîì ïðîèçâåäåíèè çäåñü äâà îäèíàêîâûõ âåêòîρ
ρ
ðà, ò. å. ïîëó÷àåòñÿ, ÷òî âñåãäà a⊥ rot a . Îäíàêî, âûïîëíÿÿ ýòó
ρ
îïåðàöèþ ïîêîîðäèíàòíî, íàïðèìåð äëÿ ïîëÿ a = {z , x , y} , ëåãêî
óáåäèòüñÿ, ÷òî ýòî íå òàê:
ρ
ρ
ρ
rot a = {111
, , } , a ⋅ rot a = x + y + z .
Ïðèìåð 9. Îïåðàöèþ
ρ ρ
ρ ρ
ρ ρ
ρ ρ
grad( a ⋅ b ) = ∇( a ⋅ b ) = ∇ a ( a ⋅ b ) + ∇ b ( a ⋅ b ) =...
ïðîâåñòè äàëåå â ñîîòâåòñòâèè ñ ïðàâèëàìè âåêòîðíîé àëãåáðû
ρ
ρ
íå ïðåäñòàâëÿåòñÿ âîçìîæíûì (âåêòîðû a è b íå âûíîñÿòñÿ çà
ñêîáêè), ïîýòîìó ëîãè÷åñêîãî ïðîäîëæåíèÿ ñèìâîëè÷åñêèì ìåòîäîì ýòà çàäà÷à íå èìååò. È õîòÿ ðåçóëüòàò ýòîé îïåðàöèè èçâåñòåí [1], íî îí ñëèøêîì ãðîìîçäêèé è äîñòèãàåòñÿ èñêóññòâåííûì ïðèåìîì, òàê ÷òî äîñòîèíñòâà ñèìâîëè÷åñêîãî ìåòîäà â ýòîé
îïåðàöèè íå ïðîÿâëÿþòñÿ.
Çàäà÷è
•  íèæåñëåäóþùèõ çàäà÷àõ èñïîëüçîâàòü, ãäå ýòî óìåñòíî,
ñâîéñòâà îïåðàòîðà ∇.
ρ
2.110. Âû÷èñëèòü ðîòîð âåêòîðíîãî ïîëÿ a = {− y 2, x 2,0} .
2.111. Âû÷èñëèòü ðîòîð ìàãíèòíîãî ïîëÿ
ρ
y
B = k − 2 , x2 ,0 ,
 ρ ρ 
54
ïðÿìîãî áåñêîíå÷íî äëèííîãî ïðîâîäà ñ òîêîì (çäåñü
ρ = x 2 + y 2 — ðàññòîÿíèå äî îñè z, k — íåêîòîðûé
êîýôôèöèåíò).
2.112. Âû÷èñëèòü ðîòîð ïîëÿ ñêîðîñòåé òî÷åê òâåðäîãî òåëà,
âðàùàþùåãîñÿ âîêðóã îñè z ñ óãëîâîé ñêîðîñòüþ ω
(ðèñ. 9).
2.113. Âû÷èñëèòü ðîòîð è äèâåðãåíöèþ ïîëÿ ñêîðîñòåé ÷àñòèö âîäû â ïîòîêå, åñëè ñêîðîñòü vx ïî ãëóáèíå
ïîòîêà ìåíÿåòñÿ ëèíåéíî, êàê ïîêàçàíî íà ðèñ. 10, à
ïî øèðèíå ïîñòîÿííà.
Ðèñ. 9
Ðèñ. 10
2.114. Âû÷èñëèòü ðîòîð è äèâåðãåíöèþ ïîëÿ ñêîðîñòåé ÷àñòèö âîäû â ïîòîêå, åñëè ñêîðîñòü vx ïî øèðèíå ïîòîêà ìåíÿåòñÿ ïî ïàðàáîëå (v = 0 — ó áåðåãîâ, v = vm
— â ñåðåäèíå), à ïî ãëóáèíå ïîñòîÿííà (ðèñ. 11).
Ðèñ. 11
ρ
ρ
2.115. Âû÷èñëèòü ðîòîð ýëåêòðè÷åñêîãî ïîëÿ E = kr / r 3 òî÷å÷íîãî çàðÿäà (çäåñü k — íåêîòîðûé êîýôôèöèåíò).
2.116. Äîêàçàòü, ÷òî âñÿêîå öåíòðàëüíî-ñèììåòðè÷íîå ïîëå
ρ
ρ
a = f ( r )r ÿâëÿåòñÿ áåçâèõðåâûì.
55
ρ ρ
• Äîêàçàòü ðàâåíñòâà, â êîòîðûõ a è c — ïîñòîÿííûå âåêρ
òîðû, r — ðàäèóñ-âåêòîð, u(r) — ñôåðè÷åñêîå ñêàëÿðíîå ïîëå:
ρ
ρ ρ
ρ ρ
ρ
2.117. rot( rc ) = ( r × c ) / r ;
2.121. rot( c × r ) = 2c ;
ρ ρ ρ ρ ρ
ρ
ρ ρ
2.118. rot( r 3 c ) = 3r ( r × c ) ;
2.122. rot[( c × r ) × a ] = a × c ;
ρ ρρ ρ ρ
ρ ρ ρ
ρ ρ
2.123. rot[( c × r ) × r ] = 3( c × r ) ;
2.119. rot( r ⋅ a )c = a × c ;
ρ ρρ ρ ρ
ρ
ρ ρ
2.120. rot( r ⋅ c )r = c × r ;
2.124. rot[u( r )c ] = u ′( r × c ) / r .
ρ
ρ
• Äîêàçàòü ðàâåíñòâà, â êîòîðûõ a è b — ïðîèçâîëüíûå
âåêòîðíûå ïîëÿ:
ρ ρ
ρ
ρ
ρ ρ
ρ
ρ
ρ ρ
2.125. rot( a × b ) = ( a div b − b div a ) + [( b ⋅ ∇ )a − ( a ⋅ ∇ )b ] ;
ρ
ρ
ρ
ρ
2.126. rotrot a = grad(div a ) − ∆a , ãäå ∆a = {∆a x , ∆a y , ∆a z } .
ρ
2.127. Ïîëüçóÿñü ðàâåíñòâîì çàäà÷è 2.126, âû÷èñëèòü rotrot a
ρ
ïðè a = {z 2, x 2, y 2} .
ρ
2.128. Äîêàçàòü, ÷òî åñëè âåêòîðíîå ïîëå a = u∇v , ãäå u è
ρ
ρ
v — ñêàëÿðíûå ïîëÿ, òî a⊥ rot a .
ρ
ρ ρ
2.129. Äîêàçàòü, ÷òî ïîëå a = c × ∇u , ãäå c — ïîñòîÿííûé
âåêòîð, ÿâëÿåòñÿ ñîëåíîèäàëüíûì.
ρ
ρ
2.130. Äîêàçàòü, ÷òî åñëè ïîëÿ a è b áåçâèõðåâûå, òî
ρ ρ
ïîëå ( a × b ) — ñîëåíîèäàëüíî.
ρ
2.131. Äîêàçàòü, ÷òî ïîòîê ðîòîðà ïîëÿ a ÷åðåç ëþáóþ
çàìêíóòóþ ïîâåðõíîñòü S ðàâåí íóëþ.
2.132. Óðàâíåíèÿ Ìàêñâåëëà, ñâÿçûâàþùèå ýëåêòðè÷åñêîå
ρ
ρ
ïîëå E è ìàãíèòíîå ïîëå B , èìåþò âèä:
ρ
 ρ
B
∂
rot E = − ∂t ρ,
 ρ
rot B = 12 ∂E .
c ∂t

ρ
Ïîêàçàòü, ÷òî åñëè ïîëå E ñîëåíîèäàëüíî, òî èç
ýòîé ñèñòåìû ñëåäóåò âîëíîâîå óðàâíåíèå:
56
ρ
ρ 1 ∂ 2E
∆E = 2 2 ,
c ∂t
ãäå ∆ = ∇ 2 — îïåðàòîð Ëàïëàñà.
2.7. Òåîðåìà Ñòîêñà. Ôîðìóëà Ãðèíà
Òåîðåìà Ñòîêñà î ïðåîáðàçîâàíèè êîíòóðíîãî èíòåãðàëà â
ïîâåðõíîñòíûé ÿâëÿåòñÿ îäíîé èç îñíîâíûõ â âåêòîðíîì àíàëèçå, êàê è òåîðåìà Îñòðîãðàäñêîãî.
ρ
Òåîðåìà.
Öèðêóëÿöèÿ âåêòîðíîãî ïîëÿ a ( x , y, z ) ïî êîíòóðó Ñ
ðàâíà ïîòîêó ðîòîðà ýòîãî ïîëÿ ÷åðåç ïðîèçâîëüíóþ
ïîâåðõíîñòü S, îãðàíè÷åííóþ ýòèì êîíòóðîì:
ρ ρ
ρ ρ
ρ ρ
∫ a ⋅ dl = ∫∫ (rota ⋅ n )dS = ∫∫ rota ⋅ dS
(2.17)
C
S
S
(îáõîä êîíòóðà Ñ è îðèåíòàöèÿ S îáðàçóþò ïðàâûé
âèíò). Ïðè ýòîì äîëæíî áûòü âûïîëíåíî âàæíîå óñρ
ëîâèå: ïîëå a ( x, y , z ) èìååò íåïðåðûâíûå ÷àñòíûå ïðîèçâîäíûå â ëþáîé òî÷êå ïîâåðõíîñòè S è íà êîíòóðå
Ñ.
Åñëè êîíòóð Ñ îõâàòûâàåò áåñêîíå÷íóþ (çàìêíóòóþ) ëèρ
íèþ, âî âñåõ òî÷êàõ êîòîðîé ïîëå a íå îïðåäåëåíî èëè íå èìååò
ïðîèçâîäíûõ, òî òåîðåìà Ñòîêñà íåïðèìåíèìà, òàê êàê ëþáàÿ
ïîâåðõíîñòü S, îãðàíè÷åííàÿ êîíòóðîì Ñ, îáÿçàòåëüíî ïåðåñå÷åò
ýòó ëèíèþ è óñëîâèå òåîðåìû Ñòîêñà âûïîëíåíî íå áóäåò.
Ïðèìåð 1. Ïî òåîðåìå Ñòîêñà âû÷èñëèòü öèðêóëÿöèþ ïîëÿ
ρ
a = { y , x 2 ,− z} ïî îêðóæíîñòè x2 + y2 = R2, z = 0, îáõîäÿ åå ïî ïðàâîìó âèíòó îòíîñèòåëüíî îñè z .
ρ
ρ
Ðåøåíèå. Ñíà÷àëà âû÷èñëèì ðîòîð ïîëÿ a : rot a = {0,0,2 x − 1} .
Ïîâåðõíîñòü S åñòåñòâåííî âûáðàòü ïëîñêîé, â âèäå êðóãà ðàäèρ
óñîì R. Íîðìàëü ê ýòîìó êðóãó n = {0,0,1} , ñëåäîâàòåëüíî,
ρ ρ
(rot a ) ⋅ n = 2 x − 1 . È òîãäà èñêîìàÿ öèðêóëÿöèÿ
ρ ρ
ρ ρ
∫ a ⋅ dl = ∫∫ (rota ) ⋅ ndS = ∫∫ (2x − 1)dS = −πR2 + 2 ∫∫ xdS .
2πR
πR 2
πR 2
57
πR 2
Ïîñëåäíèé èíòåãðàë ëåãêî âû÷èñëèòü, çàïèñàâ ýëåìåíò ïëîùàäè dS êàê ôóíêöèþ x. Äëÿ ýòîãî íàäî ðàçáèòü êðóã πR2 íà
óçêèå ïîëîñêè äëèíîé
l = 2 R2 − x 2
è øèðèíîé dx (ðèñ. 12). Òîãäà
R
∫∫ xdS = 2 ∫ x
πR 2
R2 − x 2 dx = 0 .
−R
Âïðî÷åì, ýòîò ðåçóëüòàò ìîæíî áûëî áû ïðåäñêàçàòü ñðàçó, ïîñêîëüêó ïîâåðõíîñòíûé èíòåãðàë áåðåòñÿ îò íå÷åòíîé ôóíêöèè
ïî ñèììåòðè÷íîé îòíîñèòåëüíî íà÷àëà êîîðäèíàò îáëàñòè.
Òàêèì îáðàçîì, èñêîìàÿ öèðêóëÿöèÿ ðàâíà -πR2.
Ðèñ. 12
Ïðèìåð 2. Âû÷èñëèòü öèðêóëÿöèþ ïîëÿ
ρ  y

a = − 2 , x2 ,0 , ãäå ρ 2 = x 2 + y 2 ,
ρ
ρ


âäîëü îêðóæíîñòè x2+ y2 = R2, z = 0.
Ðåøåíèå. Íåïîñðåäñòâåííîå âû÷èñëåíèå öèðêóëÿöèè ñ ïîìîùüþ çàìåí x = Rcosϕ, y = Rsinϕ, z = 0 äàåò çíà÷åíèå 2π (ñì. çàäà÷ó 2.98). Âû÷èñëåíèå æå ïî òåîðåìå Ñòîêñà (2.17) äàåò íîëü,
ρ
òàê êàê rot a = 0 (ñì. çàäà÷ó 2.111). Íî ïîñêîëüêó êîíòóð Ñ â
ρ
äàííîì ñëó÷àå îõâàòûâàåò îñü z , íà êîòîðîé ïîëå a íå îïðåäåëåíî (ρ = 0), òî çäåñü íå âûïîëíåíî óñëîâèå òåîðåìû Ñòîêñà, òàê
êàê ëþáàÿ ïîâåðõíîñòü, îãðàíè÷åííàÿ äàííûì êîíòóðîì, îáÿçàòåëüíî áóäåò ïåðåñåêàòü îñü z . Òàê ÷òî òåîðåìó Ñòîêñà äëÿ ýòîãî
58
êîíòóðà ïðèìåíÿòü íåëüçÿ. Åñëè áû êîíòóð Ñ íå îõâàòûâàë îñü z,
òî âñåãäà áû íàøëàñü ïîâåðõíîñòü S, íå ïåðåñåêàþùàÿ îñü z, è
òîãäà êàê ïðè íåïîñðåäñòâåííîì âû÷èñëåíèè, òàê è ïî òåîðåìå
Ñòîêñà (ïðèìåíåííîé ê òàêîé ïîâåðõíîñòè S) öèðêóëÿöèÿ áûëà
áû ðàâíà íóëþ.
Çàäà÷è
2.133. Íåïîñðåäñòâåííî è ïî òåîðåìå Ñòîêñà âû÷èñëèòü öèðρ
êóëÿöèþ ïîëÿ a = {z , x , y} ïî êîíòóðó x2 + y2 = R2, z = 0.
Îáõîä — ïî ïðàâîìó âèíòó îòíîñèòåëüíî îñè z.
2.134. Ñ ïîìîùüþ òåîðåìû Ñòîêñà âû÷èñëèòü öèðêóëÿöèþ
ρ
ïîëÿ a = { y,− x , z} ïî êîíòóðó x 2 + y 2 + z 2 = R 2 ,
x2 + y2 = z2 (z > 0). Îáõîä êîíòóðà — ïî ïðàâîìó âèíòó
îòíîñèòåëüíî îñè z .
2.135. Ñ ïîìîùüþ òåîðåìû Ñòîêñà âû÷èñëèòü öèðêóëÿöèþ
ρ
ïîëÿ a = { y , z , x} ïî êîíòóðó x 2 + y 2 + z 2 = R 2 ,
x + y + z = 0. Îáõîä êîíòóðà — ïî ïðàâîìó âèíòó îòρ ρ ρ
íîñèòåëüíî âåêòîðà ( e x + e y + e z ) .
2.136. Ñ ïîìîùüþ òåîðåìû Ñòîêñà âû÷èñëèòü öèðêóëÿöèþ
ρ
ïîëÿ a = {xy , yz , xz} ïî êîíòóðó, îáðàçîâàííîìó ïåðåñå÷åíèåì öèëèíäðà x2 + y2 = 1, è ïëîñêîñòè x + y + z = 1.
Îáõîä êîíòóðà — ïî ïðàâîìó âèíòó îòíîñèòåëüíî
ρ ρ ρ
âåêòîðà ( e x + e y + e z ) .
2.137. Íåïîñðåäñòâåííî è ïî òåîðåìå Ñòîêñà âû÷èñëèòü öèðρ
êóëÿöèþ ïîëÿ a = { y − z, z − x, x − y} ïî êîíòóðó
x2 + y2 = R2, x + y + z = 0. Îáõîä êîíòóðà — ïî ïðàâîìó
âèíòó îòíîñèòåëüíî îñè z.
2.138. Ñ ïîìîùüþ òåîðåìû Ñòîêñà âû÷èñëèòü öèðêóëÿöèþ
ρ
ïîëÿ a = { y ,− x, z} ïî êîíòóðó x2 + y2 + z2 = R2, x = z. Îáõîä êîíòóðà — ïî ïðàâîìó âèíòó îòíîñèòåëüíî îñè z.
2.139. Ñ ïîìîùüþ òåîðåìû Ñòîêñà âû÷èñëèòü öèðêóëÿöèþ
ρ
ïîëÿ a = {z 2,0,0} ïî êîíòóðó, îáðàçîâàííîìó ïåðåñå÷åíèåì ñôåðû x2 + y2 + z2 = R2 ñ êîîðäèíàòíûìè ïëîñ-
59
2.140.
2.141.
2.142.
2.143.
2.144.
êîñòÿìè (x ≥ 0, y ≥ 0, z ≥ 0). Îáõîä êîíòóðà — â íàïðàâëåíèè ÷åðåäîâàíèÿ îñåé x → y → z → x.
Ñ ïîìîùüþ òåîðåìû Ñòîêñà âû÷èñëèòü öèðêóëÿöèþ
ρ
ïîëÿ a = { y 2, x 2, z 2} ïî êîíòóðó, îáðàçîâàííîìó ïåðåñå÷åíèåì ñôåðû x2 + y2 + z2 = R2 ñ êîîðäèíàòíûìè ïëîñêîñòÿìè x0z è x0y (y ≥ 0, z ≥ 0). Îáõîä êîíòóðà —
ρ ρ
ïî ïðàâîìó âèíòó îòíîñèòåëüíî âåêòîðà ( e y + e z ) .
Íåïîñðåäñòâåííî è ïî òåîðåìå Ñòîêñà âû÷èñëèòü öèðρ
êóëÿöèþ ïîëÿ a = {2 xz ,− y , z} ïî êîíòóðó Ñ, îáðàçîâàííîìó ïåðåñå÷åíèåì ïëîñêîñòè x + y + 2z = 2 ñ êîîðäèíàòíûìè ïëîñêîñòÿìè. Îáõîä êîíòóðà — â íàïðàâëåíèè ÷åðåäîâàíèÿ îñåé x →y → z → x.
Íåïîñðåäñòâåííî è ïî òåîðåìå Ñòîêñà âû÷èñëèòü öèðρ
êóëÿöèþ ïîëÿ a = { y ( x + z ), z ( x + y ), x ( y + z )} ïî êîíòóðó Ñ, îáðàçîâàííîìó ïåðåñå÷åíèåì ïëîñêîñòè
x + y + z = 3 ñ êîîðäèíàòíûìè ïëîñêîñòÿìè. Îáõîä êîíòóðà — â íàïðàâëåíèè ÷åðåäîâàíèÿ îñåé x → y → z → x.
Íåïîñðåäñòâåííî è ïî òåîðåìå Ñòîêñà âû÷èñëèòü öèðρ
êóëÿöèþ ïîëÿ a = {− xz,2, y 2 / 2} ïî êîíòóðó, îáðàçîâàííîìó ïåðåñå÷åíèåì êîíóñà x2 + y2 = (z — 1)2 ñ êîîðäèíàòíûìè ïëîñêîñòÿìè (x ≥ 0, y ≥ 0, z ≥ 0). Îáõîä
êîíòóðà — â íàïðàâëåíèè ÷åðåäîâàíèÿ îñåé
x → y → z → x.
Íåïîñðåäñòâåííî è ïî òåîðåìå Ñòîêñà âû÷èñëèòü öèð-
ρ
êóëÿöèþ ïîëÿ a = {x, z,− y} ïî êîíòóðó, îáðàçîâàííîìó ïåðåñå÷åíèåì êîíóñà (x — 1)2 = y2 + z2 ñ êîîðäèíàòíûìè ïëîñêîñòÿìè (x ≥ 0, y ≥ 0, z ≥ 0). Îáõîä êîíòóðà — â íàïðàâëåíèè ÷åðåäîâàíèÿ îñåé x → y → z → x.
2.145. Ñ ïîìîùüþ òåîðåìû Ñòîêñà âû÷èñëèòü ðàáîòó ïîëÿ
ρ
a = {x 2− yz, y 2 − xz, z 2 − xy} ïî âèíòîâîé ëèíèè
x = Rcosϕ, y = Rsinϕ, z = hϕ/(2π) îò òî÷êè Ì1 (R, 0, 0)
äî M2 (R, 0, h).
60
Ôîðìóëà Ãðèíà
Ôîðìóëà Ãðèíà ÿâëÿåòñÿ ÷àñòíûì âàðèàíòîì òåîðåìû Ñòîρ
ρ
êñà, êîãäà ïîëå a — ïëîñêîå, ò. å. a = {a x ( x , y ), a y ( x , y )} . Â ýòîì
ñëó÷àå ôîðìóëà (2.17) ïðèíèìàåò âèä:
ρ ρ
 ∂a y
∫ a ⋅ dl = ∫∫  ∂x
C
S
−
∂ax 
dxdy .
∂y 
(2.18)
Ôîðìóëà Ãðèíà íåñêîëüêî óïðîùàåò âû÷èñëåíèå öèðêóëÿöèè
ïëîñêîãî âåêòîðíîãî ïîëÿ.
Çàäà÷è
• Ñëåäóþùèå çàäà÷è ðåøèòü ñ èñïîëüçîâàíèåì ôîðìóëû
Ãðèíà. Îáõîä êîíòóðîâ âåçäå ïðîòèâ ÷àñîâîé ñòðåëêè.
ρ
2.146. Äîêàçàòü, ÷òî öèðêóëÿöèÿ ïîëÿ a = {− y , x} ïî êîíòóðó Ñ ðàâíà óäâîåííîé ïëîùàäè ôèãóðû, îãðàíè÷åííîé ýòèì êîíòóðîì.
ρ
2.147. Âû÷èñëèòü öèðêóëÿöèþ ïîëÿ a = {− y 3, x 3} ïî êîíòóðó x2 + y2 = 1.
ρ
2.148. Âû÷èñëèòü öèðêóëÿöèþ ïîëÿ a = { y 2 ,− x 2} ïî êîíòóðó x + y + 1 = 0, x = 0, y = 0.
ρ
2.149. Âû÷èñëèòü öèðêóëÿöèþ ïîëÿ a = { y + x, y − x} ïî êîíòóðó x + y = 1, x = 0, y = 0.
ρ
2.150. Âû÷èñëèòü öèðêóëÿöèþ ïîëÿ a = {x − y 2 ,2 xy} ïî
êîíòóðó y = x, y = x2.
2.151. Âû÷èñëèòü öèðêóëÿöèþ ïîëÿ
ρ
a = {x ln(1 + y 2}, x 2 y / (1 + y 2 )}
ïî êîíòóðó x2 + y2 = 2x.
2.152. Âû÷èñëèòü öèðêóëÿöèþ ïîëÿ
ρ
a = {( ye xy − y 3 ),( xe xy + x 3 )}
ïî êîíòóðó x2 + y2 = 1.
61
ρ
2.153. Âû÷èñëèòü ðàáîòó ïîëÿ a = {(e x sin y − y ),(ex cos y − 1)}
ïî ïîëóîêðóæíîñòè x2 + y2 = 2x (y ≥ 0), ïðîõîäÿ åå ñïðàâà
íàëåâî.
ρ
2.154. Âû÷èñëèòü ðàáîòó ïîëÿ a = {(e x cos y − y ),(1 − e x sin y )}
ïî ïîëóîêðóæíîñòè x2 + y2 = 2x (y ≥ 0), ïðîõîäÿ åå ñïðàâà
íàëåâî.
ρ
2.155. Äîêàçàòü, ÷òî öèðêóëÿöèÿ ïîëÿ a = {− y / ρ 2, x / ρ 2} ,
ãäå ρ2 = x2 + y2, ïî êîíòóðó Ñ:
a) ðàâíà íóëþ, åñëè êîíòóð íå îõâàòûâàåò íà÷àëî
êîîðäèíàò;
á) ðàâíà 2π, åñëè êîíòóð îõâàòûâàåò íà÷àëî êîîðäè
íàò.
62
3. ÒÈÏÛ ÂÅÊÒÎÐÍÛÕ ÏÎËÅÉ
3.1. Ïîòåíöèàëüíîå ïîëå. Ñêàëÿðíûé ïîòåíöèàë
Âîçüìåì êàêîå-ëèáî íåïðåðûâíî äèôôåðåíöèðóåìîå ñêàρ
ëÿðíîå ïîëå ϕ (x, y, z) è îáðàçóåì èç íåãî âåêòîðíîå ïîëå a îïåρ
ðàöèåé ∇: a = −∇ϕ . Òàêîå âåêòîðíîå ïîëå áóäåò ÿâëÿòüñÿ ïîòåíöèàëüíûì ïî îïðåäåëåíèþ.
ρ
Îïðåäåëåíèå. Âåêòîðíîå ïîëå a ( x , y, z ) , çàäàííîå â îáëàñòè V,
íàçûâàåòñÿ ïîòåíöèàëüíûì, åñëè ñóùåñòâóåò òàêàÿ îäρ
íîçíà÷íàÿ ñêàëÿðíàÿ ôóíêöèÿ ϕ , ÷òî ïîëå a â ýòîé
îáëàñòè ïðåäñòàâèìî â âèäå
ρ
(3.1)
a = −∇ϕ ,
ò. å. åñëè îíî ÿâëÿåòñÿ ÷üèì-òî ãðàäèåíòîì. Ôóíêöèÿ
ϕ (x, y, z), óäîâëåòâîðÿþùàÿ ýòîìó óñëîâèþ, íàçûâàρ
åòñÿ ïîòåíöèàëîì âåêòîðíîãî ïîëÿ a .
Êîììåíòàðèè
1. Çíàê «-» â îïðåäåëåíèè (3.1) ââåäåí äëÿ óäîáñòâà è
ρ
âûðàæàåò òî, ÷òî ëèíèè ïîëÿ a íàïðàâëåíû â ñòîðîíó óáûâàíèÿ ïîòåíöèàëà. Òàê íàïðèìåð, òåïëî ðàñïðîñòðàíÿåòñÿ â ñòîðîíó óáûâàíèÿ òåìïåðàòóðû, æèäêîñòü òå÷åò â ñòîðîíó óáûâàíèÿ äàâëåíèÿ.
2. Èç îïðåäåëåíèÿ (3.1) âèäíî, ÷òî åñëè âìåñòî ϕ âçÿòü
ôóíêöèþ ϕ* = ϕ + Ñ, ãäå Ñ — ïðîèçâîëüíàÿ ïîñòîÿíρ
íàÿ, òî ∇ϕ* = ∇ϕ , ò. å. çàäàííîå âåêòîðíîå ïîëå a
èìååò íå âïîëíå îïðåäåëåííûé ïîòåíöèàë. Â ñâÿçè ñ
ýòèì ãîâîðÿò, ÷òî ïîòåíöèàë ϕ îïðåäåëÿåòñÿ ïîëåì
ρ
a ñ òî÷íîñòüþ äî àääèòèâíîé ïîñòîÿííîé.
3. Ëþáàÿ íåïðåðûâíî äèôôåðåíöèðóåìàÿ ôóíêöèÿ
ϕ(x,y,z) ÿâëÿåòñÿ ÷üèì-ëèáî ïîòåíöèàëîì, ò. å. ïîρ
ðîæäàåò îïðåäåëåííîå ïîòåíöèàëüíîå ïîëå a ïî ôîðρ
ìóëå (3.1), íî íå äëÿ ëþáîãî ïîëÿ a ñóùåñòâóåò
63
ñêàëÿðíàÿ ôóíêöèÿ ϕ, óäîâëåòâîðÿþùàÿ ñîîòíîøåíèþ (3.1).
4. Âñå òðè êîìïîíåíòû ïîòåíöèàëüíîãî ïîëÿ ïîëíîñòüþ îïðåäåëÿþòñÿ îäíîé ñêàëÿðíîé ôóíêöèåé ϕ (ïîòåíöèàëîì ýòîãî ïîëÿ):
∂ϕ a = − ∂ϕ
∂ϕ
, y
∂y , az = − ∂z ,
∂x
òîãäà êàê äëÿ çàäàíèÿ ïðîèçâîëüíîãî âåêòîðíîãî ïîëÿ
ñëóæàò òðè íåçàâèñèìûå ñêàëÿðíûå ôóíêöèè:
ax (x, y, z), ay (x, y, z), az (x, y, z).
ax = −
Ñâîéñòâà ïîòåíöèàëüíîãî ïîëÿ
2
1. Ðàáîòà ïîòåíöèàëüíîãî ïîëÿ
ρ ρ
∫ a ⋅ dl
íå çàâèñèò îò
1
ôîðìû êðèâîé 1—2, à òîëüêî îò êîîðäèíàò òî÷åê 1
è 2.
2. Öèðêóëÿöèÿ ïîòåíöèàëüíîãî ïîëÿ ïî ëþáîìó êîíòóðó ðàâíà íóëþ.
3. Ïîòåíöèàëüíîå ïîëå ÿâëÿåòñÿ áåçâèõðåâûì, ò. å.
ρ
rot a = 0 . Ýòî ñëåäóåò èç îïðåäåëåíèÿ (3.1) è ëåãêî
ïîäòâåðæäàåìîãî òîæäåñòâà rot grad ϕ ≡ 0 , èëè
∇×∇ϕ ≡ 0.
Êðèòåðèè ïîòåíöèàëüíîñòè ïîëÿ
ρ
Êðèòåðèé 1.Åñëè öèðêóëÿöèÿ âåêòîðíîãî ïîëÿ a ïî ëþáîìó êîíòóðó ðàâíà íóëþ, òî îíî ÿâëÿåòñÿ ïîòåíöèàëüíûì.
ρ
Êðèòåðèé 2.Åñëè â ëþáîé òî÷êå îäíîñâÿçíîé îáëàñòè V * rot a ≡ 0 ,
ρ
òî ïîëå a ÿâëÿåòñÿ ïîòåíöèàëüíûì â ýòîé îáëàñòè.
ρ
Åñëè æå îáëàñòü V íåîäíîñâÿçíà, òî óñëîâèÿ rot a ≡ 0
______________
* Îáëàñòü V òðåõìåðíîãî ïðîñòðàíñòâà íàçûâàåòñÿ îäíîñâÿçíîé,
åñëè íà ëþáîé êîíòóð Ñ â ýòîé îáëàñòè ìîæíî íàòÿíóòü ïîâåðõíîñòü,
öåëèêîì ëåæàùóþ â îáëàñòè V.
64
íåäîñòàòî÷íî äëÿ åãî ïîòåíöèàëüíîñòè; â ýòîì ñëó÷àå íåîáõîäèìî âûïîëíåíèå êðèòåðèÿ 1.
Ïðèìåð 1. Ìàãíèòíîå ïîëå ïðÿìîãî òîêà i, òåêóùåãî âäîëü
îñè z, èìååò âèä:
ρ µi y

B = 0 − 2 , x2 ,0 , ãäå ρ 2 = x 2 + y 2 .
2π  ρ ρ 
Óñòàíîâèòü, ÿâëÿåòñÿ ëè îíî ïîòåíöèàëüíûì.
Ðåøåíèå. Ñíà÷àëà ïðîâåðèì âûïîëíåíèå êðèòåðèÿ 2. Íåρ
ñëîæíûå âû÷èñëåíèÿ ðîòîðà ïîëÿ B äàþò:
ρ
ρ
ρ
(rot B ) x = (rot B ) y = (rot B ) z = 0 .
ρ
Îäíàêî íà îñè z ïîëå B íå ñóùåñòâóåò, ñëåäîâàòåëüíî, îáëàñòü
ρ
îïðåäåëåíèÿ ïîëÿ B ÿâëÿåòñÿ íåîäíîñâÿçíîé, è ïîýòîìó çäåñü
íåîáõîäèìà ïðîâåðêà âûïîëíåíèÿ êðèòåðèÿ 1. Äëÿ ýòîãî âûáåðåì êîíòóð Ñ â âèäå îêðóæíîñòè, îõâàòûâàþùåé îñü z : x = Rcosα,
y = Rsinα . Òîãäà
ρ ρ
∫ B ⋅ dl = ∫ ( Bx dx + By dy ) =
C
=
C
µ 0i 2π  R sin αR sin α R cos αR cos α 

 dα = µ0i ≠ 0 .
+

R2
R2
2π ∫0 
ρ
Ñëåäîâàòåëüíî, âî âñåì ïðîñòðàíñòâå ïîëå B íå ÿâëÿåòñÿ ïîòåíöèàëüíûì, ò. å. äàííîé òî÷êå ïðîñòðàíñòâà íåëüçÿ îäíîçíà÷íî
ñîïîñòàâèòü îïðåäåëåííûé ïîòåíöèàë ϕ , òàê êàê ïðè îáõîäå âîêðóã îñè z ýòî ÷èñëî óâåëè÷èâàåòñÿ íà µ0i :
ϕ M = (ϕ M ) o + Nµ 0 i ,
ãäå N — ÷èñëî îáõîäîâ âîêðóã îñè z âäîëü âåêòîðíîé ëèíèè
ρ
ïîëÿ B .
Ïðèìåð 2. Ýëåêòðè÷åñêîå ïîëå äëèííîé ðàâíîìåðíî çàðÿæåííîé íèòè, íàòÿíóòîé âäîëü îñè z, èìååò âèä:
ρ
y 

E = k  x2 , 2 ,0 ,
ρ
ρ


65
ãäå ρ2 = x2 + y2, k — íåêîòîðûé êîýôôèöèåíò. Óñòàíîâèòü, ÿâëÿåòñÿ ëè ýòî ïîëå ïîòåíöèàëüíûì.
Ðåøåíèå. Ïðîâåðêà âûïîëíåíèÿ êðèòåðèÿ 2 äàåò:
ρ
ρ
ρ
(rot E ) x = (rot E ) y = (rot E ) z = 0 .
ρ
Îäíàêî íà îñè z ïîëå E íå ñóùåñòâóåò, ñëåäîâàòåëüíî, îáëàñòü
ρ
îïðåäåëåíèÿ ïîëÿ E ÿâëÿåòñÿ íåîäíîñâÿçíîé, è ïîýòîìó çäåñü
íóæíà ïðîâåðêà êðèòåðèåì 1. Äëÿ ýòîãî âûáåðåì êîíòóð Ñ â âèäå
îêðóæíîñòè, îõâàòûâàþùåé îñü z : x = Rcosα, y = Rsinα. Òîãäà
ρ
ρ
2π
 R cos αR sin α + R sin αR cos α  dα = 0
.

R2
R2
0
∫ E ⋅ dl = ∫ ( Ex dx + E y dy ) = k ∫  −
C
C
ρ
Ñëåäîâàòåëüíî, ïîëå E ÿâëÿåòñÿ ïîòåíöèàëüíûì âî âñåì ïðîñòðàíñòâå.
Âû÷èñëåíèå ïîòåíöèàëà
Êàê îòìå÷àëîñü â êîììåíòàðèè 2 ê îïðåäåëåíèþ (3.1), ïîρ
òåíöèàë ϕ ïîëÿ a îïðåäåëåí ñ òî÷íîñòüþ äî àääèòèâíîé ïîñòîÿííîé. Äëÿ òîãî ÷òîáû ïðåäñòàâèòü ïîòåíöèàë ϕ îäíîçíà÷íîé
ôóíêöèåé êîîðäèíàòû òî÷êè â ïðîñòðàíñòâå, ò. å. ϕ = ϕ (x, y, z),
îäíó èç òî÷åê â ïðîñòðàíñòâå ôèêñèðóþò, ñ÷èòàÿ åå áàçîâîé
òî÷êîé Ì0 è ïîëàãàÿ ϕ (Ì0) = 0. Òîãäà ïîòåíöèàë ïðîèçâîëüíîé
ρ
òî÷êè M (x, y, z) îïðåäåëÿåòñÿ êàê ðàáîòà ïîëÿ a îò òî÷êè Ì äî
áàçîâîé Ì0 ïî ëþáîìó ïóòè (ïîñêîëüêó ðàáîòà ïîòåíöèàëüíîãî
ïîëÿ íå çàâèñèò îò ôîðìû ïóòè):
ϕM =
M0
∫
ρ ρ
a ⋅ dl .
M
(3.2)
Áàçîâóþ òî÷êó Ì0 âûáèðàþò îáû÷íî ëèáî â íà÷àëå êîîðäèíàò,
ρ
åñëè ïîëå a òàì ñóùåñòâóåò, ëèáî â áåñêîíå÷íîñòè. Ïðè ïðàêòè÷åñêèõ ðàñ÷åòàõ ïîòåíöèàëîâ ïîëåé ðåàëüíûõ ýëåêòðè÷åñêèõ ñèñòåì áàçîâóþ òî÷êó âûáèðàþò íà çåìëå, íà êîðïóñàõ ïðèáîðîâ,
íà êàêèõ-ëèáî ìàññèâíûõ ïðîâîäíèêàõ.
ρ
Ïóñòü óñòàíîâëåíî, ÷òî çàäàííîå âåêòîðíîå ïîëå a ÿâëÿåòñÿ ïîòåíöèàëüíûì, ò. å. âûïîëíåí êàêîé-ëèáî êðèòåðèé åãî ïî-
66
òåíöèàëüíîñòè. Òîãäà ðàñïðåäåëåíèå ïîòåíöèàëà ϕ = ϕ (x, y, z) ýòîãî
ïîëÿ îòíîñèòåëüíî âûáðàííîé áàçîâîé òî÷êè Ì0 ìîæíî âû÷èñëèòü íåñêîëüêèìè ñïîñîáàìè. Âûáîð òîãî èëè èíîãî èç íèõ îïðåρ
äåëÿåòñÿ êîíêðåòíîé ñòðóêòóðîé ïîëÿ a .
Ñïîñîá 1. Ïîêîîðäèíàòíûé ïîäõîä.
Ýòîò ñïîñîá ñîñòîèò â òîì, ÷òî ïóòü èíòåãðèðîâàíèÿ
â (3.2) âûáèðàåòñÿ â âèäå òðåõ îòðåçêîâ, ïàðàëëåëüíûõ îñÿì êîîðäèíàò (ðèñ. 13). Ïóñòü äëÿ îïðåäåëåííîñòè òî÷êà Ì0 íàõîäèòñÿ â íà÷àëå êîîðäèíàò, ò. å.
ρ
Ì0 (0, 0, 0). Òîãäà ïîòåíöèàë ïîëÿ a â ïðîèçâîëüíîé
òî÷êå M (x, y, z):
0
ρ ρ
ϕ ( x, y, z ) = ∫ a ⋅ dl =
M
0
∫ (a dx + a y dy + az dz ) =
x
M ( x, y, z )
0
0
0
x
y
z
= ∫ ax ( x, y, z )dx + ∫ a y (0, y, z )dy + ∫ az (0,0, z )dz .
(3.3)
Ðèñ. 13
Çàìå÷àíèå. Ôîðìóëà (3.3) ñïðàâåäëèâà òîëüêî äëÿ çàâåäîìî ïîρ
òåíöèàëüíîãî ïîëÿ. Åñëè ïîëå a íå ïîòåíöèàëüíî,
òî ðåçóëüòàò (3.3) áóäåò ëèøü ÷àñòíûì çíà÷åíèåì
ðàáîòû ïîëÿ ïî ýòîìó êîíêðåòíîìó ïóòè. Ïî äðóãîìó
ïóòè ðàáîòà áóäåò äðóãîé.
ρ
Ïðèìåð 3. Ïóñòü a = { yz , xz , xy} . Âû÷èñëèòü ïîòåíöèàë ýòîãî
ïîëÿ â ïðîèçâîëüíîé òî÷êå ïðîñòðàíñòâà îòíîñèòåëüíî áàçîâîé
òî÷êè Ì0 (0, 0, 0).
67
Ðåøåíèå. Ëåãêî óáåäèòüñÿ, ÷òî ýòî ïîëå ÿâëÿåòñÿ ïîòåíöèàëüíûì, òàê êàê åãî ðîòîð ðàâåí íóëþ, à îáëàñòü îïðåäåëåíèÿ
ρ
ïîëÿ a îäíîñâÿçíà. Òîãäà ïî ôîðìóëå (3.3) ïîëó÷àåì:
0
0
0
x
y
z
ϕ ( x, y, z ) = ∫ yzdx + ∫ 0dy + ∫ 0dz = − xyz .
Ñïîñîá 2. Ñîñòàâëåíèå ïîëíîãî äèôôåðåíöèàëà.
ρ
Ïóñòü óñòàíîâëåíî, ÷òî ïîëå a ïîòåíöèàëüíî. Òîãäà
â ñèëó (3.1) ìîæíî çàïèñàòü:
∂ϕ
∂ϕ
∂ϕ
dx +
dy +
dz = −(a x dx + a y dy + az dz ) .
(3.4)
∂x
∂y
∂z
ρ
Åñëè èç êîìïîíåíò ïîëÿ a â ïðàâîé ÷àñòè (3.4)
óäàñòñÿ ñîñòàâèòü ïîëíûé äèôôåðåíöèàë, òî îí è
áóäåò ÿâëÿòüñÿ èñêîìûì ïîòåíöèàëîì ϕ (x, y, z) âåêρ
òîðíîãî ïîëÿ a .
ρ ρ
Ïðèìåð 4. Ïóñòü a = r = {x , y , z} . Òîãäà
dϕ =
dϕ = −( xdx + ydy + zdz ) = −
2
d(x2 + y2 + z2 )
= − d  r  .
 2
2
Ñëåäîâàòåëüíî,
ϕ =−r +C.
2
Åñëè ïðè r = 0 ïîòåíöèàë ϕ = 0, òî Ñ = 0 è òîãäà ϕ = -r2/2.
Ñïîñîá 3. Âàðèàíò öåíòðàëüíî-ñèììåòðè÷íîãî ïîëÿ.
ρ
Ïóñòü âåêòîðíîå ïîëå a ÿâëÿåòñÿ öåíòðàëüíî-ñèìρ ρρ
ρ
ìåòðè÷íûì, ò. å. a = a ( r ) = f ( r )r , ãäå f(r) — ïðîèçâîëüíàÿ äèôôåðåíöèðóåìàÿ ñêàëÿðíàÿ ôóíêöèÿ, çàâèñÿùàÿ òîëüêî îò ðàññòîÿíèÿ òî÷êè äî íà÷àëà êîîðäèíàò. Íåòðóäíî óáåäèòüñÿ, ÷òî ðîòîð ýòîãî ïîëÿ ðàâåí íóëþ. À òàê êàê îáëàñòü åãî ñóùåñòâîâàíèÿ îäíîñâÿçíà, òî â ñèëó êðèòåðèÿ 2 ýòî ïîëå ÿâëÿåòñÿ
ïîòåíöèàëüíûì.
 ñôåðè÷åñêîé ñèñòåìå êîîðäèíàò ýòî ïîëå çàïèñûρ
ρ
ρ
âàåòñÿ â âèäå a = f ( r )rer , ãäå er — åäèíè÷íûé ðàäè2
68
àëüíûé âåêòîð. Òîãäà åäèíñòâåííàÿ ðàäèàëüíàÿ êîìρ
ïîíåíòà ar = f (r)r ïîëÿ a ñâÿçàíà ñ ïîòåíöèàëîì ϕ
ñîîòíîøåíèåì
ar = −(∇ϕ )r = −
∂ϕ
∂r
,
îòêóäà
ϕ = − ∫ ar dr = − ∫ f (r )rdr + C .
Êîíñòàíòà Ñ îïðåäåëÿåòñÿ èç ïîñòóëèðóåìîãî çíà÷åíèÿ ϕ (0) èëè ϕ (∞) è îáû÷íî îêàçûâàåòñÿ íóëåâîé.
ρ
ρ
Ïðèìåð 5. Âû÷èñëèòü ïîòåíöèàë ãóêîâñêîãî ïîëÿ a = − kr .
ρ
ρ
Ðåøåíèå.  ñôåðè÷åñêîé ñèñòåìå a = − krer . Òîãäà
ϕ = ∫ krdr = k r + C .
2
Ïîëàãàÿ ϕ (0) = 0, ïîëó÷èì Ñ = 0, è òîãäà ϕ = kr2/2.
Ïðèìåð 6. Âû÷èñëèòü ïîòåíöèàë êóëîíîâñêîãî ïîëÿ
ρ ρ 3
a = r / (r ) .
ρ ρ
ρ
Ðåøåíèå.  ñôåðè÷åñêîé ñèñòåìå a = rer / (r 3 ) = er / (r 2 ) . Òîãäà
2
ϕ = − ∫ dr2 = 1 + C .
r
r
Ïîëàãàÿ ϕ (∞) = 0, ïîëó÷èì Ñ = 0, è òîãäà ϕ = 1/r. Çäåñü ïîòåíöèàë ϕ îïðåäåëåí îòíîñèòåëüíî áåñêîíå÷íîñòè, òàê êàê â íóëå îí
íå ñóùåñòâóåò.
Çàäà÷è
• Óñòàíîâèòü, ÿâëÿþòñÿ ëè ïîòåíöèàëüíûìè ñëåäóþùèå âåêòîðíûå ïîëÿ, è åñëè äà, òî âû÷èñëèòü èõ ïîòåíöèàëû îòíîñèòåëüíî íà÷àëà êîîðäèíàò èëè áåñêîíå÷íîñòè:
ρ
ρ
3.1. a = {xz ,2 y , xy} ;
3.5. a = { yz + 1, xz , xy} ;
ρ
ρ
3.2. a = {2xy + z 2,2 yz + x 2,2 xz + y 2} ; 3.6. a = {− y , x ,0} ;
ρ
ρ
3.3. a = {x 3, y 3, xz 3} ;
3.7. a = { y, x ,0} ;
ρ
ρ
3.4. a = {2xyz, x 2 z, x 2 y} ;
3.8. a = { y, x, ez} ;
3.9.
ρ
a = { y + z, x + z, x + y} ;
69
ρ
, , } / (x + y + z) ;
3.10. a = {111
ρ
3.11. a = { yz ( 2 x + y + z ), xz ( x + 2 y + z ), xy ( x + y + 2 z )} .
ρ
ρ
3.12. Äîêàçàòü, ÷òî îñåâîå ðàäèàëüíîå ïîëå a = f ( ρ )ρ , ãäå
ρ
ρ = {x , y ,0} , f ( ρ ) — ïðîèçâîëüíàÿ ôóíêöèÿ ðàññòîÿíèÿ òî÷êè äî îñè z, ÿâëÿåòñÿ ïîòåíöèàëüíûì.
3.13. Äîêàçàòü, ÷òî âåêòîðíûå ëèíèè ïîòåíöèàëüíîãî ïîëÿ
ρ
a âñþäó ïåðïåíäèêóëÿðíû ïîâåðõíîñòÿì ðàâíîãî ïîòåíöèàëà (ýêâèïîòåíöèàëüíûì ïîâåðõíîñòÿì)
ϕ = const.
ρ
ρ
3.14. Ïóñòü a1 è a 2 — ïîòåíöèàëüíûå âåêòîðíûå ïîëÿ, à
èõ ïîòåíöèàëàìè ÿâëÿþòñÿ ñêàëÿðíûå ôóíêöèè ϕ1 è
ϕ2. Äîêàçàòü, ÷òî ñêàëÿðíîå ïîëå ϕ = ϕ1 + ϕ2 ÿâëÿåòñÿ
ρ ρ ρ
ïîòåíöèàëîì âåêòîðíîãî ïîëÿ a = a1 + a 2 .
ρ
3.15. Âàæíåéøèìè ñâîéñòâàìè ïîòåíöèàëüíîãî ïîëÿ a ÿâëÿþòñÿ ñëåäóþùèå:
2
à) ðàáîòà
ρ ρ
∫ a ⋅ dl
íå çàâèñèò îò ôîðìû êðèâîé
1
1—2, à òîëüêî îò êîîðäèíàò òî÷åê 1 è 2;
ρ ρ
á) öèðêóëÿöèÿ ∫ a ⋅ dl = 0 ïî ëþáîìó êîíòóðó Ñ.
C
Äîêàçàòü, ÷òî ýòè ñâîéñòâà òîæäåñòâåííû, ò. å. ÷òî
èç ñâîéñòâà (a) ñëåäóåò (á), à èç (á) ñëåäóåò ñâîéñòâî (à).
3.16. Âíóòðè áåñêîíå÷íîãî ïëîñêîãî ñëîÿ -d ≤ x ≤ d ðàâíîìåðíî ðàñïðåäåëåí ýëåêòðè÷åñêèé çàðÿä. Èçâåñòíî,
÷òî òàêîé ñëîé ñîçäàåò â ïðîñòðàíñòâå ýëåêòðè÷åñêîå
ρ
ïîëå E = {E x ,0,0} , ãäå
 kx при − d ≤ x ≤ d ,

Ex =  kd при
x ≥ d,
− kd при
x ≤ −d ,

70
k — íåêîòîðûé êîýôôèöèåíò (ðèñ. 14). Âû÷èñëèòü ïîòåíöèàë ýòîãî ïîëÿ íà âñåé îñè x îòíîñèòåëüíî òî÷êè
x = 0.
Ðèñ. 14
3.17. Ïóñòü îáëàñòü îïðåäåëåíèÿ V ïîòåíöèàëüíîãî ïîëÿ
ρ
a ñîäåðæèò íà÷àëî êîîðäèíàò, ïðè÷åì ëþáàÿ òî÷êà
M (x, y, z) ýòîé îáëàñòè ìîæåò áûòü ñîåäèíåíà ñ íà÷àëîì êîîðäèíàò îòðåçêîì ïðÿìîé, öåëèêîì ïðèíàäëåæàùèì V. Äîêàçàòü, ÷òî ïðè ýòèõ óñëîâèÿõ ïîρ
òåíöèàë ϕ ïîëÿ a â òî÷êå M (x, y, z) îòíîñèòåëüíî
íà÷àëà êîîðäèíàò Î ìîæíî âû÷èñëèòü ïî ôîðìóëå
0
ρ
ρ
ϕ ( M ) = ∫ (a( M ′) ⋅ r )dt ,
1
ρ
ãäå r — ðàäèóñ-âåêòîð òî÷êè M (x, y, z), à òî÷êà
M´(tx, ty, tz) ïðè èçìåíåíèè t îò 1 äî 0 ïðîáåãàåò îò
òî÷êè Ì äî Î ïî ïðÿìîé.
3.2. Ñîëåíîèäàëüíîå ïîëå. Âåêòîðíûé ïîòåíöèàë
ρ
Îïðåäåëåíèå. Âåêòîðíîå ïîëå a ( x , y, z ) , çàäàííîå â îáëàñòè V,
íàçûâàåòñÿ ñîëåíîèäàëüíûì â ýòîé îáëàñòè, åñëè ñóρ
ùåñòâóåò òàêîå âåêòîðíîå ïîëå A( x , y , z ) , äëÿ êîòîðîãî
ρ
ρ
a = rot A ,
71
(3.5)
ρ
ò. å. åñëè ïîëå a ÿâëÿåòñÿ ðîòîðîì êàêîãî-òî äðóãîãî
ρ
ïîëÿ. Ïîëå A ïðè ýòîì íàçûâàåòñÿ âåêòîðíûì ïîρ
òåíöèàëîì èñõîäíîãî ïîëÿ a *.
ρ
Èç (3.5) ñëåäóåò, ÷òî âåêòîðíûé ïîòåíöèàë A çàäàííîãî
ρ
ñîëåíîèäàëüíîãî ïîëÿ a îïðåäåëÿåòñÿ íåîäíîçíà÷íî, à ñ òî÷íîñòüþ äî ãðàäèåíòà ïðîèçâîëüíîé ñêàëÿðíîé ôóíêöèè y (x, y, z). Äåéρ
ρ
ñòâèòåëüíî, ïîëå A ′ = ( A + ∇ψ ) òàêæå áóäåò ÿâëÿòüñÿ âåêòîðíûì
ρ
ïîòåíöèàëîì ïîëÿ a , ïîñêîëüêó
ρ
ρ
ρ
ρ ρ ρ
rot A′ = rot( A + ∇ψ ) = rot A + rot ∇ψ = rot A + 0 = a .
ρ
Çàìå÷àíèå. Ñêàëÿðíûé ïîòåíöèàë ϕ ïîòåíöèàëüíîãî ïîëÿ a îïðåäåëÿåòñÿ ñ òî÷íîñòüþ äî àääèòèâíîé êîíñòàíòû Ñ,
òàê êàê ∇ (ϕ + Ñ) = ∇ϕ.
Ñâîéñòâà ñîëåíîèäàëüíîãî ïîëÿ
ρ
1. Åñëè âñþäó âíóòðè çàìêíóòîé ïîâåðõíîñòè S ïîëå a
ÿâëÿåòñÿ ñîëåíîèäàëüíûì, òî
ρ ρ
∫∫ a ⋅ dS = 0 .
S
ρ
2. Ïîòîê ñîëåíîèäàëüíîãî ïîëÿ a ÷åðåç äâå ëþáûå ïîâåðõíîñòè S1 è S2, îãðàíè÷åííûå îáùèì êîíòóðîì
Ñ, îäèíàêîâ ïðè óñëîâèè, ÷òî â îáëàñòè V ìåæäó S1
è S2 íåò èñòî÷íèêîâ.
______________
* Ðàíåå, â ðàçäåëå 2.3, áûëî äàíî äðóãîå îïðåäåëåíèå ñîëåíîè-
ρ
äàëüíîãî ïîëÿ: ýòî ïîëå, äëÿ êîòîðîãî div a ≡ 0 â íåêîòîðîé îáëàñòè
V. Ìîæíî äîêàçàòü [1, 2], ÷òî ýòè îïðåäåëåíèÿ ýêâèâàëåíòíû, ò. å. åñëè
ρ
ρ
ïîëå a ïðåäñòàâèìî â âèäå (3.5), òî div a ≡ 0 (ýòî ñëåäóåò èç òîãî,
ρ
ρ
ρ
÷òî divrot A ≡ 0 ), à åñëè â îáëàñòè V div a ≡ 0 , òî äëÿ ïîëÿ a âñåãäà
ρ
ρ
ρ
ìîæíî ïîäîáðàòü ïîëå A òàêîå, ÷òî rot A = a .
72
Ïðèìåð 1. Ïóñòü â íà÷àëå êîîðäèíàò íàõîäèòñÿ òî÷å÷íûé
ρ ρ
èñòî÷íèê, ñîçäàþùèé ïîëå a = r / r 3 . Ëåãêî ïðîâåðèòü, ÷òî ýòî
ïîëå ñîëåíîèäàëüíî âñþäó, êðîìå òî÷êè (0, 0, 0), ãäå îíî íå
ρ
îïðåäåëåíî, ò. å. div a = 0 ïðè r ≠ 0. È ïóñòü çàäàí êîíòóð Ñ:
x2 + y2 = R2, z = h (ðèñ. 15). Òîãäà
ρ ρ
ρ ρ
ρ ρ
∫∫ a ⋅ dS = ∫∫ a ⋅ dS ≠ ∫∫ a ⋅ dS ,
S
S
S
1
2
3
òàê êàê îáëàñòü ìåæäó S1 è S2 íå ñîäåðæèò èñòî÷íèêîâ, à îáëàñòü
ìåæäó S1 è S3 ñîäåðæèò.
Ðèñ. 15
ρ
ρ ρ ρ
Ïðèìåð 2. Çàäàíî ïîëå a = (c × r ) / r 3 , ãäå c — ïîñòîÿííûé
ρ
âåêòîð. Ëåãêî ïðîâåðèòü, ÷òî div a = 0 ïðè r ≠ 0, ò. å., êàê è â
ïðåäûäóùåì ïðèìåðå, ýòî ïîëå ñîëåíîèäàëüíî âñþäó, êðîìå òî÷êè
(0, 0, 0), ãäå îíî íå îïðåäåëåíî. Íî ó ýòîãî ïîëÿ èñòî÷íèêîâ íåò.
Äëÿ ïðîâåðêè îòñóòñòâèÿ òî÷å÷íîãî èñòî÷íèêà â òî÷êå (0,0,0)
äîñòàòî÷íî âû÷èñëèòü ïîòîê ýòîãî ïîëÿ ÷åðåç ìàëóþ ñôåðó, îõâàòûâàþùóþ òî÷êó (0, 0, 0), è óáåäèòüñÿ, ÷òî îí ðàâåí íóëþ,
ïîñêîëüêó âñþäó íà ýòîé ñôåðå êîìïîíåíòà ar = 0. Ñëåäîâàòåëüíî, äëÿ ëþáîãî êîíòóðà Ñ (ðèñ. 15)
ρ ρ
ρ ρ
ρ ρ
∫∫ a ⋅ dS = ∫∫ a ⋅ dS = ∫∫ a ⋅ dS .
S1
S2
S3
73
Ïîñòðîåíèå âåêòîðíîãî ïîòåíöèàëà
ρ
Åñëè ñîëåíîèäàëüíîñòü çàäàííîãî âåêòîðíîãî ïîëÿ a â îáρ
ëàñòè V óñòàíîâëåíà, ò. å. íàéäåíî, ÷òî div a = 0 â îáëàñòè V, òî
ρ
ïîñòðîåíèå åãî âåêòîðíîãî ïîòåíöèàëà A ñîñòîèò â îòûñêàíèè
êàêîãî-ëèáî ÷àñòíîãî ðåøåíèÿ âåêòîðíîãî äèôôåðåíöèàëüíîãî
óðàâíåíèÿ (3.5), êîòîðîå ýêâèâàëåíòíî òðåì ñêàëÿðíûì
∂A ∂A
∂Az ∂Ay
∂A ∂A
−
= ax , x − z = a y , y − x = az .
(3.6)
∂x
∂y
∂y
∂z
∂z
∂x
Êîìïîíåíòû Ax (x, y, z), Ay (x, y, z), Az (x, y, z) âåêòîðíîãî ïîòåíöèàëà
ρ
A , óäîâëåòâîðÿþùèå óðàâíåíèÿì (3.6), ìîãóò áûòü íàéäåíû ñëåäóþùèì îáðàçîì.
ρ
Ïîëüçóÿñü îòíîñèòåëüíûì ïðîèçâîëîì âûáîðà âåêòîðà A ,
ïîëîæèì äëÿ ïðîñòîòû Ax = 0. Òîãäà ñèñòåìà (3.6) ïðèìåò âèä:

∂Az ∂Ay
−
= ax ,
∂
∂
y
z
а)

∂Az
= −a y ,
б)
∂x

∂Ay
= az .
в)
∂x

(3.7)
Èç (3.7á) è (3.7â) èìååì:
а ) Az ( x, y, z ) = −∫ a y ( x, y, z )dx + C1( y, z ),

б ) Ay ( x, y, z ) = ∫ az ( x, y, z )dx + C2( y, z ),
(3.8)
ãäå C1 (y, z) è C2 (y, z) — ïðîèçâîëüíûå äèôôåðåíöèðóåìûå ôóíêöèè, íî òàêèå, ÷òîáû óäîâëåòâîðÿëîñü óðàâíåíèå (3.7à). Ïîýòîìó îäíó èç íèõ âñåãäà ìîæíî ïîëîæèòü ðàâíîé íóëþ, íàïðèìåð
Ñ2, òàê ÷òî
Ay = ∫ az dx .
(3.9)
Äëÿ íàõîæäåíèÿ ôóíêöèè C1 (y, z), à çàòåì è ïîñëåäíåé êîìïîíåíòû Az , ïîäñòàâèì (3.8à) è (3.9) â óðàâíåíèå (3.7à):
−
∂ a dx + ∂C1 − ∂ a dx = a
x ;
∂y ∫ y
∂y ∂z ∫ z
74
îòñþäà
∂C1( y, z ) ∂
∂
=
a dx + ∫ az dx + ax .
∂y
∂y ∫ y
∂z
(3.10)
Ìîæíî ïðîâåðèòü, ÷òî ïðàâàÿ ÷àñòü (3.10) íå çàâèñèò îò x.
Äëÿ ýòîãî äîñòàòî÷íî ïðîäèôôåðåíöèðîâàòü åå ïî x è ó÷åñòü, ÷òî
ρ
div a = 0 :
∂  ∂ a dx + ∂ a dx + a  =

x
∂x  ∂y ∫ y
∂z ∫ z

∂a
∂a
∂a ∂a
= ∂  ∂ ∫ a y dx + ∂  ∂ ∫ az dx + x = y + z + x = 0 .
 ∂z  ∂x
 ∂x
∂y  ∂x
∂y
∂z
∂x
ρ
Ýòî îçíà÷àåò, ÷òî åñëè div a ≠ 0 , òî âåêòîðíûé ïîòåíöèàë äëÿ
ρ
ïîëÿ a ïîñòðîèòü íå óäàñòñÿ.
Èíòåãðèðóÿ (3.10) ïî y, ïîëó÷àåì
∂

∂
C1( y, z ) = ∫  ∫ a y dx dy + ∫  ∫ az dx dy + ∫ ax dy + C3( z ) , (3.11)
 ∂z

 ∂y

ãäå C3(z) — ïðîèçâîëüíàÿ ôóíêöèÿ. Ïîëàãàÿ äëÿ ïðîñòîòû Ñ3 = 0
è ïîäñòàâëÿÿ (3.11) â (3.8à), ïîëó÷àåì ïîñëåäíþþ êîìïîíåíòó
ρ
Az èñêîìîãî âåêòîðíîãî ïîòåíöèàëà A .
ρ
Çàìå÷àíèå. Ââèäó îòíîñèòåëüíîãî ïðîèçâîëà âûáîðà âåêòîðà A ,
âìåñòî óñëîâèÿ Ax = 0 ìîæíî ïîëîæèòü Ay = 0 èëè Az = 0.
Òîãäà óðàâíåíèÿ (3.7), à çíà÷èò è âñå íàéäåííûå
ρ
êîìïîíåíòû âåêòîðà A áóäóò äðóãèìè, íî âñå ðàâåíñòâà (3.6) áóäóò âûïîëíåíû è â ýòîì ñëó÷àå. Èíîé
ρ
âèä âåêòîðíîãî ïîòåíöèàëà A ïîëó÷èòñÿ è â âàðèàíòå, êîãäà â (3.8) ïîëîæèòü Ñ1 = 0, à Ñ2 èñêàòü êàê
ðåøåíèå (3.7à).
ρ
Ïðèìåð 3. Ïîñòðîèòü âåêòîðíûé ïîòåíöèàë A ïîëÿ
ρ
a = { y , z ,0} .
ρ
ρ
Ðåøåíèå. Òàê êàê div a = 0 , òî ïîëå a ñîëåíîèäàëüíî. Óðàâíåíèÿ (3.6) äëÿ îïðåäåëåíèÿ êîìïîíåíò âåêòîðíîãî ïîòåíöèàëà
â íàøåì ñëó÷àå ïðèíèìàþò âèä:
75
∂Ay ∂A
∂Az ∂Ay
∂Ax ∂Az
−
= y,
−
= z , ∂x = ∂yx .
∂y
∂z
∂z
∂x
(3.12)
Ïîëîæèì äëÿ îïðåäåëåííîñòè Ax = 0; òîãäà äâà ïîñëåäíèõ óðàâíåíèÿ (3.12) äàþò:
Az = -xz + C1 (y, z),
Ay = C2 (y, z),
ãäå C1 (y, z) è C2 (y, z) — ïðîèçâîëüíûå ôóíêöèè, íî òàêèå,
÷òîáû âûïîëíÿëîñü ïåðâîå óðàâíåíèå (3.12). Ïîýòîìó ìîæíî ïîëîæèòü, íàïðèìåð, Ñ1 = 0, òàê ÷òî òðåòüÿ êîìïîíåíòà Az = -xz.
Âòîðóþ êîìïîíåíòó Ay òåïåðü ñðàçó íàõîäèì èç ïåðâîãî óðàâíåíèÿ (3.12):
∂ (− xz ) − ∂Ay = y
,
∂y
∂z
îòêóäà Ay = -yz + C3 (z). Ïðîèçâîëüíóþ ôóíêöèþ C3 (z) òàêæå
ìîæíî ïîëîæèòü ðàâíîé íóëþ, è òîãäà
ρ
(3.13)
A = {0,− yz ,− xz} .
Ââèäó îòíîñèòåëüíîé ãðîìîçäêîñòè ïðîöåäóðû ïîñòðîåíèÿ
âåêòîðíîãî ïîòåíöèàëà âñåãäà ñëåäóåò óáåæäàòüñÿ, ÷òî íàéäåííûé âåêòîðíûé ïîòåíöèàë äåéñòâèòåëüíî ÿâëÿåòñÿ òàêîâûì, ò. å.
÷òî îí óäîâëåòâîðÿåò óðàâíåíèþ (3.5).
Åñòü åùå îäèí ñïîñîá ïîñòðîåíèÿ âåêòîðíîãî ïîòåíöèàëà
ρ
A , êîòîðûé âî ìíîãèõ ñëó÷àÿõ ïðîùå ðàññìîòðåííîãî âûøå. Ïóñòü
ρ
îáëàñòü îïðåäåëåíèÿ V ñîëåíîèäàëüíîãî ïîëÿ a ñîäåðæèò íà÷àëî
êîîðäèíàò Î, ïðè÷åì ëþáàÿ òî÷êà M(x,y,z) ýòîé îáëàñòè ìîæåò
áûòü ñîåäèíåíà ñ íà÷àëîì êîîðäèíàò îòðåçêîì ïðÿìîé, öåëèêîì
ïðèíàäëåæàùèì V. Òîãäà îäèí èç âåêòîðíûõ ïîòåíöèàëîâ ïîëÿ
ρ
a ìîæåò áûòü íàéäåí ïî ôîðìóëå
1
ρ
ρ
ρ
A( M ) = ∫ (a( M ′) × r )tdt ,
0
(3.14)
ρ
ãäå r — ðàäèóñ-âåêòîð òî÷êè M (x, y, z), à òî÷êà M´(tx, ty, tz) ïðè
èçìåíåíèè ïàðàìåòðà t îò 0 äî 1 ïðîáåãàåò îò òî÷êè Î äî Ì ïî
ïðÿìîé.
76
ρ
Ïðèìåð 4. Íàéòè âåêòîðíûé ïîòåíöèàë A ñîëåíîèäàëüíîãî
ρ
ïîëÿ a = { y , z ,0} èç ïðèìåðà 3.
Ðåøåíèå. Âû÷èñëèì ôóíêöèþ ïîä èíòåãðàëîì (3.14):
ρ ρ ρ
ex ey ez
ρ
ρ
ρ
ρ
ρ
t(a( M ′ ) × r ) = t ty tz 0 = t 2 z 2ex − t 2 yzey + t 2( y 2 − xz )ez .
x
y z
Òîãäà
ρ
1
A( x, y, z ) = {z 2,− yz, y 2 − xz} .
3
Âåêòîðíûé ïîòåíöèàë ïîëó÷èëñÿ íåñêîëüêî áîëåå ãðîìîçäêèì,
÷åì (3.13), íî óðàâíåíèþ (3.5) îí óäîâëåòâîðÿåò.
Ïîêàæåì, ÷òî âåêòîðíûå ïîòåíöèàëû (3.13) è òîëüêî ÷òî
íàéäåííûé îòëè÷àþòñÿ äðóã îò äðóãà íà ãðàäèåíò íåêîòîðîé ñêàëÿðíîé ôóíêöèè ψ, ò. å. ÷òî èõ ðàçíîñòü
1 2 2
2 
1
 3 z , 3 yz,  3 y 2 + 3 xz  = ∇ψ .


Ïîñêîëüêó îáëàñòü îïðåäåëåíèÿ òàêîãî âåêòîðíîãî ïîëÿ ÿâëÿåòñÿ îäíîñâÿçíîé, òî äëÿ ïîòåíöèàëüíîñòè ýòîãî ïîëÿ äîñòàòî÷íî,
÷òîáû åãî ðîòîð áûë ðàâåí íóëþ. Ëåãêî óáåäèòüñÿ, ÷òî ýòî òàê.
Âïðî÷åì, ýòîò ðåçóëüòàò ñëåäóåò è èç òîãî, ÷òî äëÿ ëþáûõ äâóõ
ρ
ρ
ρ ρ
ρ
ρ
ïîëåé A1 è A2 rot( A1 − A2 ) = rot A1 − rot A2 , à åñëè îáà îíè ÿâëÿþòñÿ
ρ
âåêòîðíûìè ïîòåíöèàëàìè îäíîãî è òîãî æå ïîëÿ a , òî ïîëå
ρ ρ
( A1 − A2 ) áåçâèõðåâîå, à çíà÷èò, îíî ïðåäñòàâèìî â âèäå
ρ ρ
A1 − A2 = ∇ψ .
Çàäà÷è
3.18. Òî÷å÷íûé ýëåêòðè÷åñêèé (èëè ìàãíèòíûé) äèïîëü
ñîçäàåò â îêðóæàþùåì ïðîñòðàíñòâå ýëåêòðè÷åñêîå
(èëè ìàãíèòíîå) ïîëå
ρ ρ
ρ
ρ
(p⋅r) ρ p
a =3 5 r − 3 ,
r
r
77
ρ
ãäå p — ìîìåíò äèïîëÿ, ïîñòîÿííûé âåêòîð. Óñòàíîρ
âèòü, ÿâëÿåòñÿ ëè ïîëå a ñîëåíîèäàëüíûì.
3.19. Ðàâíîìåðíî çàðÿæåííàÿ ñôåðà ðàäèóñîì R, âðàùàþùàÿñÿ âîêðóã ñâîåé îñè, èìååò ìàãíèòíûé äèïîëüρ
íûé ìîìåíò p (ïîñòîÿííûé âåêòîð). Âåêòîðíûé ïîòåíöèàë òàêîé ñôåðû îïðåäåëÿåòñÿ âûðàæåíèåì:
ρ ( pρ × rρ) / R3 при r < R,
A=  ρ ρ 3
( p × r ) / r при r > R.
Ïîêàçàòü, ÷òî ìàãíèòíîå ïîëå, ñîçäàâàåìîå ýòîé ñôåðîé,
ρ 2 pρ / R3
при r < R,
B= ρ ρ ρ 5 ρ 3
3( p ⋅ r )r / r − p / r при r > R.
• Ïðîöåäóðîé, ïðåäñòàâëåííîé ôîðìóëàìè (3.7)—(3.11), ïîñòðîèòü âåêòîðíûå ïîòåíöèàëû ñëåäóþùèõ ñîëåíîèäàëüíûõ ïîëåé:
ρ
ρ
3.20. a = {111
3.22. a = {2 y ,− z ,2 x} ;
, , };
ρ
ρ
3.21. a = { y , z , x} ;
3.23. a = {0,0, ex − e y} ;
ρ
3.24. a = {x 2, y 2,−2 z( x + y )} .
ρ
3.25. Âåêòîðíûìè ïîòåíöèàëàìè ïîëÿ a = {0,0,2ω} ÿâëÿþòρ
ñÿ: A1 = {−ωy, ωx,0} — ïîëå ñêîðîñòåé ÷àñòèö òâåðäîãî
òåëà, âðàùàþùåãîñÿ âîêðóã îñè z ñ óãëîâîé ñêîðîñρ
òüþ ω (çàäà÷à 2.112); A2 = {0,2ωx ,0} — ïîëå ñêîðîñòåé ÷àñòèö â ïîòîêå æèäêîñòè (â ðåêå), òåêóùåé âäîëü
îñè y (çàäà÷à 2.113). Ïîêàçàòü, ÷òî ýòè âåêòîðíûå
ïîòåíöèàëû îòëè÷àþòñÿ íà ãðàäèåíò íåêîòîðîé ñêàëÿðíîé ôóíêöèè ψ, è íàéòè åå.
ρ ρ
3.26. Íàéòè âåêòîðíûé ïîòåíöèàë ïîëÿ a = r = {x , y , z} .
3.27. Ïî áåñêîíå÷íî äëèííîìó òîíêîìó ïðîâîäó, ïðîòÿíóòîìó âäîëü îñè z, òå÷åò òîê i, êîòîðûé ñîçäàåò â
ïðîñòðàíñòâå ìàãíèòíîå ïîëå
78
ρ µi y x 
B = 0 − 2 , 2 ,0 ,
2π  ρ ρ 
2
2
2
ãäå ρ = x + y , µ0 — ìàãíèòíàÿ ïîñòîÿííàÿ. Äîêàçàòü
ñîëåíîèäàëüíîñòü ýòîãî ïîëÿ è ïðîöåäóðîé (3.7)—
(3.11) ïîñòðîèòü åãî âåêòîðíûé ïîòåíöèàë.
3.28. Áåñêîíå÷íî äëèííàÿ ïðÿìàÿ íèòü, ïðîòÿíóòàÿ âäîëü
îñè z, íåñåò çàðÿä, ðàâíîìåðíî ðàñïðåäåëåííûé ïî
åå äëèíå ñ ëèíåéíîé ïëîòíîñòüþ γ. Òàêàÿ íèòü ñîçäàåò â îêðóæàþùåì ïðîñòðàíñòâå ýëåêòðè÷åñêîå ïîëå
ρ
γ x y 
, ,0
E=
2πε0  ρ 2 ρ 2  ,
ãäå ρ2 = x2 + y2, ε0 — ýëåêòðè÷åñêàÿ ïîñòîÿííàÿ. Äîêàçàòü ñîëåíîèäàëüíîñòü ýòîãî ïîëÿ è ïðîöåäóðîé (3.7)—
(3.11) ïîñòðîèòü åãî âåêòîðíûé ïîòåíöèàë. Âû÷èñëèòü âåêòîðíûé ïîòåíöèàë òàêæå ïî ôîðìóëå (3.14).
Çàìå÷àíèå. Íà ïðàêòèêå äëÿ îïèñàíèÿ ýëåêòðè÷åñêèõ
ïîëåé íåïîäâèæíûõ çàðÿäîâ âåêòîðíûé ïîòåíöèàë
íå ïðèìåíÿåòñÿ, ïîñêîëüêó òàêèå ïîëÿ ìîãóò áûòü
îïèñàíû áîëåå ïðîñòûì ñïîñîáîì — ñ ïîìîùüþ ñêàëÿðíîãî ïîòåíöèàëà.
3.29.  áåñêîíå÷íîì ïî îñÿì y è z ñëîå, îãðàíè÷åííîì
ïëîñêîñòÿìè x = d è x = -d, â íàïðàâëåíèè îñè z òå÷åò ýëåêòðè÷åñêèé òîê. Ìàãíèòíîå ïîëå ýòîãî òîêà
èìååò âèä
µ j{0,x,0} при − d ≤ x ≤ d ,
ρ  0
B = µ0 j{0,d ,0} при
x > d,
µ j{0,−d ,0} при x < − d ,
 0
ãäå j — ïëîòíîñòü òîêà â ñëîå, µ0 — ìàãíèòíàÿ ïîñòîρ
ÿííàÿ. Ïîêàçàòü, ÷òî òàêîå ïîëå B ÿâëÿåòñÿ ñîëåíîèäàëüíûì, è ñ ïîìîùüþ ïðîöåäóðû (3.7)—(3.11) ïîñòðîèòü âåêòîðíûé ïîòåíöèàë ýòîãî ïîëÿ âíóòðè è
âíå ñëîÿ, íåïðåðûâíûé íà åãî ãðàíèöàõ.
79
ρ
3.30. Íàéòè âåêòîðíûé ïîòåíöèàë ýëåêòðè÷åñêîãî ïîëÿ E
ðàâíîìåðíî çàðÿæåííîãî ñëîÿ, îïèñàííîãî â çàäà÷å
3.16.
• Èñïîëüçóÿ ôîðìóëó (3.14), íàéòè âåêòîðíûå ïîòåíöèàëû
ñëåäóþùèõ ïîëåé, ïðåäâàðèòåëüíî óáåäèâøèñü â èõ ñîëåíîèäàëüíîñòè:
ρ
ρ
3.33. a = {6 x ,−15 y,9 z} ;
3.31. a = {111
, , };
ρ
ρ
3.32. a = { y , z , x} ;
3.34. a = {0,2 cos( xz ),0} .
3.35. Äîêàçàòü, ÷òî îäèí èç âåêòîðíûõ ïîòåíöèàëîâ îäíîρ ρ ρ
ρ
ðîäíîãî ïîëÿ a ïðèâîäèòñÿ ê âèäó A = (a × r ) / 2 . Äîêàçàòåëüñòâî ïðîâåñòè ïóòåì ïîñòðîåíèÿ ñîîòâåòñòâóþùåãî âåêòîðíîãî ïîòåíöèàëà.
ρ
3.36. Ïóñòü p — ïîñòîÿííûé âåêòîð. Äîêàçàòü ñîëåíîèρ ρ ρ
äàëüíîñòü ïîëÿ a = p × r è ïî ôîðìóëå (3.14) íàéòè
åãî âåêòîðíûé ïîòåíöèàë.
• Äîêàçàòü ñîëåíîèäàëüíîñòü ïåðå÷èñëåííûõ íèæå ïîëåé, â
ρ
ρ
êîòîðûõ r — ðàäèóñ-âåêòîð, p — ïîñòîÿííûé âåêòîð, u(r) —
çàäàííàÿ ôóíêöèÿ, è ïîêàçàòü, ÷òî èõ âåêòîðíûå ïîòåíöèàëû
ρ
ρ
ìîãóò áûòü ïðåäñòàâëåíû â âèäå A = f ( r ) p , ãäå f (r) — íåêîòîðàÿ ôóíêöèÿ ðàññòîÿíèÿ òî÷êè äî íà÷àëà êîîðäèíàò; íàéòè êîíêðåòíûé âèä ôóíêöèè f (r) äëÿ ýòèõ ïîëåé:
ρ
ρ ρ
ρ ρ ρ
3.39. a = ( r × p ) / r ;
3.37. a = r ( r × p ) ;
ρ ρ ρ
ρ ρ ρ
3.38. a = r × p ;
3.40. a = ( r × p ) / r 3 ;
ρ
ρ ρ
ρ
ρ
3.41. a = u( r )r × p ;
3.42. a = ∇u × p .
3.3. Ëàïëàñîâî ïîëå. Ãàðìîíè÷åñêèå ôóíêöèè
ρ
Îïðåäåëåíèå. Âåêòîðíîå ïîëå a ( x , y, z ) íàçûâàåòñÿ ëàïëàñîâûì â
îáëàñòè V, åñëè â ëþáîé òî÷êå ýòîé îáëàñòè
ρ
ρ
div a = 0 , rot a = 0 .
Òàêèì îáðàçîì, â îäíîñâÿçíîé îáëàñòè ëàïëàñîâî ïîëå ÿâëÿåòñÿ îäíîâðåìåííî ïîòåíöèàëüíûì è ñîëåíîèäàëüíûì.
80
Èç ñâîéñòâà ïîòåíöèàëüíîñòè ëàïëàñîâà ïîëÿ ñëåäóåò, ÷òî â
îäíîñâÿçíîé îáëàñòè îíî ïîëíîñòüþ îïðåäåëÿåòñÿ ñêàëÿðíûì
ρ
ïîòåíöèàëîì u, óäîâëåòâîðÿþùèì óñëîâèþ a = − grad u . Ïîäñòàâρ
ëÿÿ ýòî âûðàæåíèå â óðàâíåíèå div a = 0 , ïîëó÷àåì divgrad u = 0
èëè
∆u = 0 ,
(3.15)
∂2 ∂2 ∂2
ãäå ∆ = ∇2 = ∂x 2 + ∂y 2 + ∂z 2 — îïåðàòîð Ëàïëàñà (ëàïëàñèàí). Óðàâíåíèå (3.15) íàçûâàåòñÿ óðàâíåíèåì Ëàïëàñà.
Îïðåäåëåíèå. Ñêàëÿðíàÿ ôóíêöèÿ u(x,y,z), äâàæäû íåïðåðûâíî
äèôôåðåíöèðóåìàÿ è óäîâëåòâîðÿþùàÿ óðàâíåíèþ
Ëàïëàñà, íàçûâàåòñÿ ãàðìîíè÷åñêîé.
Ïðèìåðû ãàðìîíè÷åñêèõ ôóíêöèé:
• u = C;
• u = ax + by + cz + d;
• u = xyz;
• u = xy + xz + yz;
• u = x2 — y2.
Ðåøåíèå âñåõ çàäà÷ íàñòîÿùåãî ðàçäåëà ïðåäïîëàãàåòñÿ â
äåêàðòîâûõ êîîðäèíàòàõ.
Çàäà÷è
• Óñòàíîâèòü, ÿâëÿþòñÿ ëè ãàðìîíè÷åñêèìè ñëåäóþùèå ñêàëÿðíûå ïîëÿ, â êîòîðûõ
ρ = x 2 + y2 , r = x 2 + y2 + z 2 :
3.43. u = ln ρ ;
3.45. u = ln r ;
3.44. u = 1 / ρ ;
3.46. u = 1 / r .
`3.47. Çàêîí Ôóðüå óòâåðæäàåò, ÷òî ïëîòíîñòü òåïëîâîãî
ρ ρ
ïîòîêà j = en dQ / ( dSdt ) â äàííîé òî÷êå âåùåñòâà ïðîïîðöèîíàëüíà ãðàäèåíòó òåìïåðàòóðû â ýòîé òî÷êå:
ρ
j = − λ∇T , ãäå λ — êîýôôèöèåíò, íàçûâàåìûé òåïëîïðîâîäíîñòüþ âåùåñòâà. Ïîêàçàòü, ÷òî åñëè â îá-
81
3.48.
3.49.
3.50.
3.51.
3.52.
3.53.
3.54.
3.55.
ëàñòè V íåò èñòî÷íèêîâ òåïëà, òî òåìïåðàòóðíîå ïîëå
T (x, y, z) ÿâëÿåòñÿ ãàðìîíè÷åñêèì â ýòîé îáëàñòè.
Âû÷èñëèòü ∆r :
a) íà ïëîñêîñòè;
á) â ïðîñòðàíñòâå.
Âû÷èñëèòü ∆r 2 :
Âû÷èñëèâ ∆r n, ïîêàçàòü, ÷òî ñêàëÿðíàÿ ôóíêöèÿ
u = rn ÿâëÿåòñÿ ãàðìîíè÷åñêîé òîëüêî ïðè n = -1.
ρ
ρ
Ïðè êàêîé ôóíêöèè u(r) âåêòîðíîå ïîëå a = u( r )r
áóäåò ëàïëàñîâûì â ñâîåé îáëàñòè îïðåäåëåíèÿ?
Âû÷èñëèâ ∆u (ρ), íàéòè îáùèé âèä ãàðìîíè÷åñêîãî
öèëèíäðè÷åñêîãî ïîëÿ u (ρ).
Âû÷èñëèâ ∆u (r), íàéòè îáùèé âèä ãàðìîíè÷åñêîãî
ñôåðè÷åñêîãî ïîëÿ u (r).
Äîêàçàòü, ÷òî åñëè u è v — äâà ñêàëÿðíûõ ïîëÿ, òî
∆(uv) = u∆v + v∆u + 2 (∇u⋅∇v). Äîêàçàòåëüñòâî âûïîëíèòü êîîðäèíàòíûì è ñèìâîëè÷åñêèì ìåòîäàìè.
Äîêàçàòü, ÷òî åñëè ñêàëÿðíîå ïîëå u (x, y, z) ÿâëÿåòñÿ
ãàðìîíè÷åñêèì â îáëàñòè V, îãðàíè÷åííîé ïîâåðõíîñòüþ S, òî
∂u
∫∫ ∂n dS = 0 ,
S
ãäå ∂/∂n — ïðîèçâîäíàÿ ïî íîðìàëè ê ïîâåðõíîñòè S.
3.56. Ïóñòü u (x, y, z) — äâàæäû íåïðåðûâíî äèôôåðåíöèðóåìàÿ ñêàëÿðíàÿ ôóíêöèÿ â îáëàñòè V, îãðàíè÷åííîé ïîâåðõíîñòüþ S. Äîêàçàòü, ÷òî
∂u
∫∫ ∂n dS = ∫∫∫ ∆udV
S
V
.
(3.16)
3.57. Äîêàçàòü, ÷òî äëÿ ëþáîé îáëàñòè V, îãðàíè÷åííîé
ïîâåðõíîñòüþ S,
∂
∫∫ ∂n (r 2 )dS = 6V ,
S
ãäå ∂/∂n — ïðîèçâîäíàÿ ïî íîðìàëè ê ïîâåðõíîñòè
S.
82
3.58. Äîêàçàòü, ÷òî
∂  1
0, если поверхность S не охватывает то ÷ ку (0,0,0),
∫∫ ∂n  r  dS = - 4π , если поверхность S охватывает то ÷ ку (0,0,0).
3.59. Äîêàçàòü, ÷òî åñëè ñêàëÿðíîå ïîëå u (x, y, z) ÿâëÿåòñÿ
ãàðìîíè÷åñêèì â îáëàñòè V, îãðàíè÷åííîé ïîâåðõíîñòüþ S, òî
∂u
∫∫ u ∂n dS = ∫∫∫ (∇u)2 dV ,
S
V
ãäå ∂/∂n — ïðîèçâîäíàÿ ïî íîðìàëè ê ïîâåðõíîñòè S.
ρ
ρ
ρ
3.60. Äîêàçàòü, ÷òî ∆a = grad(div a ) − rot(rot a ) ,
ρ
ãäå ∆a = {∆( a x ), ∆( a y ), ∆( a z )} .
ρ
ρ ρ
3.61. Âû÷èñëèòü ∆( c × r ) , ãäå c — ïîñòîÿííûé âåêòîð.
Çàäà÷ó ðåøèòü:
a) êîîðäèíàòíûì ìåòîäîì;
á) ñèìâîëè÷åñêèì ìåòîäîì, èñïîëüçóÿ ñîîòíîøåíèå (3.17).
ρ
ρ
3.62. Äîêàçàòü, ÷òî ∆( u( r )r ) = ( u ′′ + 4u ′ / r )r .
83
4. ÊÐÈÂÎËÈÍÅÉÍÛÅ ÎÐÒÎÃÎÍÀËÜÍÛÅ
ÊÎÎÐÄÈÍÀÒÛ
4.1. Ïîíÿòèå î êðèâîëèíåéíûõ êîîðäèíàòàõ
Îïðåäåëåíèå. Òðîéêà ÷èñåë (q1, q2, q3), âûáèðàåìàÿ ïî êàêîìó-ëèáî ïðàâèëó, íàçûâàåòñÿ îáîáùåííûìè êîîðäèíàòàìè òî÷êè
Ì, åñëè ìåæäó ýòîé òðîéêîé è ïîëîæåíèåì òî÷êè Ì â ïðîñòðàíñòâå ñóùåñòâóåò âçàèìíî-îäíîçíà÷íîå ñîîòâåòñòâèå.
Åñëè ýòè òðè ÷èñëà îïðåäåëèòü êàê ðàññòîÿíèÿ ñ ñîîòâåòñòâóþùèìè çíàêàìè îò òî÷êè Ì äî òðåõ âçàèìíî ïåðïåíäèêóëÿðíûõ ïëîñêîñòåé, òî, ïîëîæèâ q1 = x, q2 = y, q3 = z , ïîëó÷èì
ïðÿìîóãîëüíûå äåêàðòîâû êîîðäèíàòû òî÷êè Ì.
Îäíàêî âî ìíîãèõ ñëó÷àÿõ ïîëîæåíèå òî÷êè Ì â ïðîñòðàíñòâå óäîáíåå çàäàâàòü êàêîé-ëèáî äðóãîé òðîéêîé ÷èñåë, áîëåå
ñîîòâåòñòâóþùåé ñèììåòðèè êîíêðåòíîé çàäà÷è. Íàèáîëåå ðàñïðîñòðàíåííûìè ñðåäè òàêèõ êîîðäèíàòíûõ ñèñòåì ÿâëÿþòñÿ
öèëèíäðè÷åñêàÿ è ñôåðè÷åñêàÿ.
 öèëèíäðè÷åñêîé ñèñòåìå êîîðäèíàò ïîëîæåíèå òî÷êè Ì â
ïðîñòðàíñòâå çàäàåòñÿ ñëåäóþùåé òðîéêîé ÷èñåë:
• q1 = ρ — ðàññòîÿíèå îò òî÷êè Ì äî îñè z (ρ ≥ 0);
• q2 = ϕ — óãîë ïîâîðîòà ïîëóïëîñêîñòè (ρ, z) îòíîñèòåëüíî îñè x (0 ≤ ϕ ≤ 2π);
• q3 = z — ðàññòîÿíèå îò òî÷êè Ì äî ïëîñêîñòè (x, y)
(-∞ < z < ∞).
Ñâÿçü öèëèíäðè÷åñêèõ è äåêàðòîâûõ êîîðäèíàò òî÷êè âèäíà èç ðèñ. 16:
x = ρ cos ϕ ,

 y = ρ sin ϕ ,
z = z.

(4.1)
 ñôåðè÷åñêîé ñèñòåìå êîîðäèíàò ïîëîæåíèå òî÷êè Ì â ïðîñòðàíñòâå çàäàåòñÿ ñëåäóþùåé òðîéêîé ÷èñåë:
• q1 = r — ðàññòîÿíèå îò òî÷êè Ì äî íà÷àëà êîîðäèíàò
(r ≥ 0);
• q2 = θ — óãîë ìåæäó ëó÷îì r è îñüþ z (ïîëÿðíûé
óãîë) (0 ≤ θ ≤ π);
84
• q3 = ϕ — óãîë ïîâîðîòà ïîëóïëîñêîñòè (r, z) îòíîñèòåëüíî îñè x (àçèìóòàëüíûé óãîë) (0 ≤ ϕ < 2π).
Ñâÿçü ñôåðè÷åñêèõ è äåêàðòîâûõ êîîðäèíàò òî÷êè ïðîñëåæèâàåòñÿ íà ðèñ. 17:
x = r sin θ cos ϕ ,

 y = r sin θ sin ϕ ,
z = r cos θ .

(4.2)
Ðèñ. 16
Ðèñ. 17
Èç îïðåäåëåíèÿ îáîáùåííûõ êîîðäèíàò ñëåäóåò, ÷òî êàæäàÿ èç âåëè÷èí q1, q2, q3 äîëæíà ÿâëÿòüñÿ ôóíêöèåé ðàäèóñà-âåêρ
ρ
òîðà r òî÷êè â ïðîñòðàíñòâå. À òàê êàê ðàäèóñ-âåêòîð r âïîëíå
îïðåäåëÿåòñÿ ïðÿìîóãîëüíûìè äåêàðòîâûìè êîîðäèíàòàìè òî÷êè, òî êàæäàÿ èç îáîáùåííûõ êîîðäèíàò ÿâëÿåòñÿ ôóíêöèåé
òðåõ äåêàðòîâûõ:
q1 = q1 (x, y, z), q2 = q2 (x, y, z), q3 = q3 (x, y, z).
È îáðàòíî — êàæäàÿ èç òðåõ äåêàðòîâûõ êîîðäèíàò ÿâëÿåòñÿ
ôóíêöèåé òðåõ îáîáùåííûõ:
x = x (q1, q2, q3), y = y (q1, q2, q3), z = z (q1, q2, q3).
Äëÿ öèëèíäðè÷åñêèõ è ñôåðè÷åñêèõ êîîðäèíàò ïîñëåäíèå ïåðåõîäû âûðàæàþòñÿ ôîðìóëàìè (4.1) è (4.2).
Îïðåäåëåíèå. Ïîâåðõíîñòè óðîâíÿ, íà êîòîðûõ êàæäàÿ èç êîîðäèíàò èìååò ïîñòîÿííîå çíà÷åíèå: q1 (x, y, z) = C1,
85
q2 (x, y, z) = C2, q3(x,y,z) = C3 — íàçûâàþòñÿ êîîðäèíàòíûìè ïîâåðõíîñòÿìè â ñèñòåìå îáîáùåííûõ êîîðäèíàò.
 öèëèíäðè÷åñêîé ñèñòåìå êîîðäèíàòíûìè ïîâåðõíîñòÿìè
ÿâëÿþòñÿ ñëåäóþùèå:
• ρ = const — êðóãîâûå öèëèíäðû ñ îñüþ, ëåæàùåé
íà îñè z;
• ϕ = const — ïîëóïëîñêîñòè, ïðîõîäÿùèå ÷åðåç îñü z
ïîä óãëîì ϕ ê îñè x;
• z = const — ïëîñêîñòè, ïåðïåíäèêóëÿðíûå îñè z .
 ñôåðè÷åñêîé ñèñòåìå êîîðäèíàòíûìè ïîâåðõíîñòÿìè ÿâëÿþòñÿ ñëåäóþùèå:
• r = const — ñôåðû ñ öåíòðîì â òî÷êå Î;
• θ = const — êðóãîâûå ïîëóêîíóñû ñ âåðøèíîé â òî÷êå Î; îñè ýòèõ ïîëóêîíóñîâ ñîâïàäàþò ñ îñüþ z, à
îáðàçóþùèå èìåþò óãîë θ ñ îñüþ z;
• ϕ = const — ïîëóïëîñêîñòè, ïðîõîäÿùèå ÷åðåç îñü z
ïîä óãëîì ϕ ê îñè x.
Ëèíèè ïåðåñå÷åíèÿ êàæäîé ïàðû êîîðäèíàòíûõ ïîâåðõíîñòåé îáðàçóþò êîîðäèíàòíûå ëèíèè â ñèñòåìå îáîáùåííûõ
êîîðäèíàò.
Îïðåäåëåíèå. Ëèíèè â ïðîñòðàíñòâå, âäîëü êîòîðûõ èçìåíÿåòñÿ
òîëüêî êîîðäèíàòà q1, íàçûâàþòñÿ êîîðäèíàòíûìè
ëèíèÿìè (q1); àíàëîãè÷íî îïðåäåëÿþòñÿ êîîðäèíàòíûå ëèíèè (q2) è (q3).
 öèëèíäðè÷åñêîé ñèñòåìå êîîðäèíàòíûìè ëèíèÿìè ÿâëÿþòñÿ ñëåäóþùèå:
• ëèíèè (ρ) — ëó÷è, ïåðïåíäèêóëÿðíûå îñè z ñ íà÷àëîì íà ýòîé îñè;
• ëèíèè (ϕ) — îêðóæíîñòè ñ öåíòðàìè íà îñè z, ïåðïåíäèêóëÿðíûå ýòîé îñè;
• ëèíèè (z) — ïðÿìûå, ïàðàëëåëüíûå îñè z (ðèñ. 18).
 ñôåðè÷åñêîé ñèñòåìå êîîðäèíàòíûìè ëèíèÿìè ÿâëÿþòñÿ
ñëåäóþùèå:
• ëèíèè (r) — ëó÷è, âûõîäÿùèå èç òî÷êè Î;
• ëèíèè (θ) — ìåðèäèàíû íà ñôåðå;
• ëèíèè (ϕ) — ïàðàëëåëè íà ñôåðå (ðèñ. 19).
86
Ðèñ. 18
Ðèñ. 19
Çàìå÷àíèå. Îáîáùåííûå êîîðäèíàòû íå îáÿçàòåëüíî èìåþò ðàçìåðíîñòü äëèíû, îíè ìîãóò áûòü è óãëàìè; íî êîîðäèíàòíûå ëèíèè — ýòî âñåãäà îáúåêòû, ýëåìåíòû
êîòîðûõ èìåþò ðàçìåðíîñòü äëèíû.
Ïîñêîëüêó íåêîòîðûå êîîðäèíàòíûå ëèíèè â öèëèíäðè÷åñêîé è ñôåðè÷åñêîé ñèñòåìàõ íå ÿâëÿþòñÿ ïðÿìûìè, òî òàêèå
êîîðäèíàòíûå ñèñòåìû íàçûâàþòñÿ êðèâîëèíåéíûìè.
ρ ρ ρ
Îïðåäåëåíèå. Òðîéêà åäèíè÷íûõ âåêòîðîâ e1 , e2 , e3 , íàïðàâëåííûõ ïî êàñàòåëüíûì ê ñîîòâåòñòâóþùèì êîîðäèíàòíûì ëèíèÿì (q1), (q2), (q3) â ñòîðîíó âîçðàñòàíèÿ
ïåðåìåííûõ q1, q2, q3, íàçûâàåòñÿ áàçèñîì êîîðäèíàòíîé ñèñòåìû (q1, q2, q3). Íóìåðàöèÿ áàçèñíûõ âåêòîðîâ âåäåòñÿ òàê, ÷òîáû ýòà òðîéêà áûëà ïðàâîé.
ρ ρ ρ
Åñëè â äåêàðòîâîé ñèñòåìå áàçèñíûå âåêòîðû e x , e y , e z ÿâëÿþòñÿ ïîñòîÿííûìè âî âñåõ òî÷êàõ ïðîñòðàíñòâà, òî â êðèâîëèíåéíîé ñèñòåìå îíè âñå èëè ÷àñòü èç íèõ áóäóò ìåíÿòü ñâîå
íàïðàâëåíèå ïðè ïåðåõîäå îò îäíîé òî÷êè ê äðóãîé, ò. å. áàçèñ â
êðèâîëèíåéíîé ñèñòåìå áóäåò ïîäâèæíûì.
Îïðåäåëåíèå. Ñèñòåìà êðèâîëèíåéíûõ êîîðäèíàò íàçûâàåòñÿ îðòîãîíàëüíîé, åñëè â ëþáîé òî÷êå Ì áàçèñíûå âåêòîρ ρ ρ
ðû e1 , e2 , e3 ïîïàðíî îðòîãîíàëüíû.
 îðòîãîíàëüíîé ñèñòåìå êîîðäèíàòíûå ëèíèè áóäóò âçàèìíî ïåðïåíäèêóëÿðíû â ëþáîé òî÷êå ïðîñòðàíñòâà.
87
Öèëèíäðè÷åñêàÿ è ñôåðè÷åñêàÿ ñèñòåìû ÿâëÿþòñÿ ïðèìåðàìè îðòîãîíàëüíûõ êðèâîëèíåéíûõ ñèñòåì êîîðäèíàò. Áàçèñîì
öèëèíäðè÷åñêîé ñèñòåìû ÿâëÿåòñÿ òðîéêà åäèíè÷íûõ âçàèìíî
ρ ρ ρ
îðòîãîíàëüíûõ âåêòîðîâ (îðòîâ) eρ , eϕ , e z (ðèñ. 18), à áàçèñîì
ρ ρ ρ
ñôåðè÷åñêîé ñèñòåìû — òðîéêà er , eθ , eϕ (ðèñ. 19).
Îñíîâíîé õàðàêòåðèñòèêîé âñÿêîé êðèâîëèíåéíîé ñèñòåìû
êîîðäèíàò ÿâëÿþòñÿ êîýôôèöèåíòû Ëàìý H1, H2, H3, âõîäÿùèå
â ðàçëè÷íûå âûðàæåíèÿ è îïåðàöèè âåêòîðíîãî àíàëèçà â êðèâîëèíåéíûõ êîîðäèíàòàõ. Äëÿ ýëåìåíòîâ ãåîìåòðèè â îáîáùåííûõ êîîðäèíàòàõ (q1, q2, q3) ñïðàâåäëèâû ñëåäóþùèå ñîîòíîøåíèÿ:
1) ýëåìåíòû äëèí äóã êîîðäèíàòíûõ ëèíèé:
dli = Hidqi (i = 1, 2, 3);
2) ýëåìåíòû ïëîùàäè êîîðäèíàòíûõ ïîâåðõíîñòåé:
dS1 = dl2dl3 = H2H3dq2dq3, dS2 = dl1dl3 = H1H3dq1dq3,
dS3 = dl1dl2 = H1H2dq1dq2;
3) ýëåìåíò îáúåìà: dV = dl1dl2dl3 = H1H2H3dq1dq2dq3.
 ÷àñòíîñòè, â öèëèíäðè÷åñêèõ êîîðäèíàòàõ (ρ, ϕ, z) êîýôôèöèåíòû Ëàìý H1 = 1, H2 = ρ, H3 = 1, è òîãäà:
dl ρ = dρ , dlϕ = ρdϕ , dl z = dz ;
dS ρ = ρdϕdz , dSϕ = dρdz , dS z = ρdρdϕ ;
dV = ρdρdϕdz .
 ñôåðè÷åñêèõ êîîðäèíàòàõ (r, θ, ϕ) êîýôôèöèåíòû Ëàìý
H1 = 1, H2 = ρ, H3 = r sinθ, è òîãäà:
dl r = dr , dlθ = rdθ , dlϕ = r sin θ dϕ ;
dSr = r 2 sin θ dθ dϕ , dSθ = r sin θ drdϕ , dS ϕ = rdrdθ ;
dV = r 2 sin θ drdθdϕ .
4.2. Ïðåîáðàçîâàíèÿ áàçèñà
Ïðè ïðåîáðàçîâàíèÿõ âåêòîðíûõ ïîëåé èç äåêàðòîâîé ñèñòåìû â êàêóþ-ëèáî îáîáùåííóþ (èëè íàîáîðîò) íåîáõîäèìî çàäàâàòü íå òîëüêî ôîðìóëû ïðåîáðàçîâàíèÿ êîîðäèíàò òèïà (4.1)
88
èëè (4.2), íî è ôîðìóëû ïåðåõîäà èç îäíîãî áàçèñà â äðóãîé:
ρ ρ ρ
ρ ρ ρ
( e x , e y , e z ) ↔ ( e 1 , e2 , e3 ) . Â îáùåì âèäå ïðåîáðàçîâàíèå áàçèñà äåêàðòîâîé ñèñòåìû êîîðäèíàò â áàçèñ îáîáùåííîé ñèñòåρ ρ ρ
ìû ( e 1 , e2 , e3 ) äàåòñÿ ñîîòíîøåíèåì:
ρ
1  ∂x ρ ∂y ρ ∂z ρ 
ek =
e +
e +
e

Hk  ∂qk x ∂qk y ∂qk z  , k = 1, 2, 3,
(4.3)
ãäå H1, H2, H3 — êîýôôèöèåíòû Ëàìý äàííîé îáîáùåííîé ñèñòåìû êîîðäèíàò. Äëÿ öèëèíäðè÷åñêîé ñèñòåìû ïîäñòàíîâêà (4.1)
â (4.3) äàåò:
ρ ρ
ρ
eρ = ex cos ϕ + ey sin ϕ ,
ρ
ρ
ρ
eϕ = −ex sin ϕ + ey cos ϕ ,
ρ
ρ
e = e .
z
z
(4.4à)
Îòñþäà óæå ëåãêî ïîëó÷èòü è îáðàòíîå ïðåîáðàçîâàíèå:
ρ ρ
ρ
ex = eρ cos ϕ − eϕ sin ϕ ,
ρ
ρ ρ
ey = eρ sin ϕ + eϕ cos ϕ ,
eρ = eρ .
z
z
(4.4á)
ρ
ρ
ρ
Ïðèìåð. Çàïèñàòü ïîëå a ( x , y , z ) = {− y , x ,0} = − ye x + xe y â öèëèíäðè÷åñêîì áàçèñå.
Ðåøåíèå. Èñïîëüçóÿ ôîðìóëû (4.1) è (4.4á), ïîëó÷àåì
ρ
ρ
a ( ρ, ϕ , z ) = ρeϕ .
Àíàëîãè÷íûå ïðåîáðàçîâàíèÿ áàçèñîâ ìåæäó ñôåðè÷åñêîé è
äåêàðòîâîé ñèñòåìàìè êîîðäèíàò èìåþò áîëåå ãðîìîçäêèé âèä.
ρ
Îäíàêî åñëè âåêòîðíîå ïîëå a ÿâëÿåòñÿ öåíòðàëüíî-ñèììåòðè÷-
ρ
ρ
íûì, ò. å. ïðåäñòàâèìî â âèäå a = f ( r ) r , òî â ñôåðè÷åñêèõ êîîðäèíàòàõ îíî èìååò òîëüêî ðàäèàëüíóþ êîìïîíåíòó:
ρ
ρ ρ
ρ
ρ
ρ
ρ ρ
ρ
a = a ( r ) = f ( r )rer .  ÷àñòíîñòè, E = kr / r 3 = ker / r 2 , F = − kr = − krer .
89
Çàäà÷è
• Ïðåäñòàâèòü â öèëèíäðè÷åñêèõ êîîðäèíàòàõ ñëåäóþùèå
âåêòîðíûå ïîëÿ, çàäàííûå â äåêàðòîâûõ êîîðäèíàòàõ.
4.1. Ìàãíèòíîå ïîëå ïðÿìîãî òîêà
ρ k
B = 2 {− y, x,0} .
ρ
4.2. Àçèìóòàëüíî-öèëèíäðè÷åñêîå ïîëå îáùåãî âèäà
ρ
a = f ( ρ ){− y, x ,0} .
4.3. Ýëåêòðè÷åñêîå ïîëå ïðÿìîé íèòè
ρ k
E = 2 {x, y,0} .
ρ
4.4. Ðàäèàëüíî-öèëèíäðè÷åñêîå ïîëå îáùåãî âèäà
ρ
a = f ( ρ ){x , y,0} .
4.5. Ïðîäîëüíîå îñåñèììåòðè÷íîå (îòíîñèòåëüíî îñè z)
ïîëå
ρ
ρ
yρ
xρ
a = f1( ρ, z ) ex + f1( ρ, z ) ey + f2 ( ρ, z )ez .
ρ
ρ
4.3. Îïåðàöèè âåêòîðíîãî àíàëèçà
â êðèâîëèíåéíûõ êîîðäèíàòàõ
4.3.1. Óðàâíåíèÿ âåêòîðíûõ ëèíèé
Ïóñòü â êðèâîëèíåéíûõ êîîðäèíàòàõ (q1, q2, q3) çàäàíî âåêòîðíîå ïîëå
ρ
ρ
ρ
ρ
(4.5)
a = a1(q1, q2, q3 )e1 + a2(q1, q2 , q3 )e2 + a3(q1, q2, q3 )e3 .
Äèôôåðåíöèàëüíûå óðàâíåíèÿ âåêòîðíûõ ëèíèé ýòîãî ïîëÿ
èìåþò âèä:
H1dq1 H2dq2 H3dq3
=
=
a1
a2
a3 ,
90
ãäå H1, H2, H3 — êîýôôèöèåíòû Ëàìý äàííîé ñèñòåìû êðèâîëèíåéíûõ êîîðäèíàò.  ÷àñòíîñòè, â öèëèíäðè÷åñêèõ êîîðäèíàòàõ
(q1 = ρ, q2 = ϕ, q3 = z; H1 = 1, H2 = ρ, H3 = 1):
ρdϕ
dρ
dz
=
=
a1( ρ, ϕ , z ) a2 ( ρ, ϕ , z ) a3( ρ, ϕ , z ) ;
â ñôåðè÷åñêèõ êîîðäèíàòàõ (q1 = r, q2 = θ, q3 = ϕ; H1 = 1, H2 = r,
H3 = r sinθ):
r sin θdϕ
dr
rdθ
=
=
a1(r, θ , ϕ ) a2(r, θ , ϕ ) a3(r, θ , ϕ ) .
ρ ρ
ρ
Ïðèìåð 1. Íàéòè âåêòîðíûå ëèíèè ïîëÿ a = eρ + ϕeϕ = {1, ϕ ,0} .
Ðåøåíèå. Äèôôåðåíöèàëüíûå óðàâíåíèÿ âåêòîðíûõ ëèíèé
dρ ρdϕ dz
=
=
ϕ
1
0 .
Îòñþäà z = C1, ρ = C2ϕ. Ýòî ñïèðàëè Àðõèìåäà â ïëîñêîñòÿõ, ïåðïåíäèêóëÿðíûõ îñè z .
4.3.2. Ãðàäèåíò
Ïóñòü çàäàíî ñêàëÿðíîå ïîëå u (q1, q2, q3). Òîãäà åãî ãðàäèåíò
 1 ∂u 1 ∂u 1 ∂ u 
∇u = 
,
,
.
 H1 ∂q1 H2 ∂q2 H3 ∂q3 
 ÷àñòíîñòè, â öèëèíäðè÷åñêèõ êîîðäèíàòàõ:
 ∂u 1 ∂u ∂u 
∇u =  ,
, ;
∂æ æ ∂ϕ ∂z 
â ñôåðè÷åñêèõ êîîðäèíàòàõ:


∇u = ∂u , 1 ∂u , 1 ∂u  .
∂
∂θ
θ
∂ϕ
sin
r
r
r


91
(4.6.)
Çàäà÷è
4.6. Íàéòè âåêòîðíûå ëèíèè ïîëÿ
ρ
θ eρ + sin θ eρ
a = 2 cos
.
r
r3
r3 θ
ρ
ρ
ρ
4.7. Íàéòè âåêòîðíûå ëèíèè ïîëÿ a = ρeϕ + bez , ãäå b —
÷èñëî.
4.8. Íàéòè ñåìåéñòâî ëèíèé áûñòðåéøåãî âîçðàñòàíèÿ
ïîëÿ u = r 2 cosθ.
4.9. Íàéòè íàïðàâëåíèå áûñòðåéøåãî âîçðàñòàíèÿ ïîëÿ
cos θ
â òî÷êå Ì (1, π/2, 0).
r2
4.10. Âû÷èñëèòü ãðàäèåíò ñêàëÿðíîãî ïîëÿ u = r 2 cosθ.
4.11. Âû÷èñëèòü ãðàäèåíò ñêàëÿðíîãî ïîëÿ u = ρ + zcosϕ.
u=−
4.3.3. Äèâåðãåíöèÿ
Ïóñòü çàäàíî âåêòîðíîå ïîëå (4.5). Òîãäà åãî äèâåðãåíöèÿ
ρ
div a =
 ∂ (a1 H2 H3 ) ∂ (a2 H 1H3 ) ∂ (a3 H 1H2 ) 
1
+
+
.
H1 H2 H3 
∂q1
∂q2
∂q3
(4.7)
 ÷àñòíîñòè, â öèëèíäðè÷åñêèõ êîîðäèíàòàõ (q1 = ρ, q2 = ϕ, q3 = z;
H1 = 1, H2 = ρ, H3 = 1):
ρ a ∂a 1 ∂a2 ∂a3
+
div a = 1 + 1 +
ρ ∂ρ ρ ∂ϕ ∂z ;
â ñôåðè÷åñêèõ êîîðäèíàòàõ (q1 = r, q2 = θ, q3 = ϕ; H1 = 1, H2 = r,
H3 = r sinθ):
ρ 1 ∂ (a1r 2 )
1 ∂ (a2 sin θ )
1 ∂a3
div a = 2
+
+
∂r
∂θ
r
r sin θ
r sin θ ∂ϕ .
92
4.3.4. Ðîòîð
Ïóñòü çàäàíî âåêòîðíîå ïîëå (4.5). Òîãäà åãî ðîòîð
ρ
e1
H2 H3
ρ
∂
rot a =
∂q1
a1 H1
ρ
e2
H1 H3
∂
∂q1
a2 H2
ρ
e3
H1 H2
∂
∂q3 .
a3 H3
 ÷àñòíîñòè, â öèëèíäðè÷åñêèõ è ñôåðè÷åñêèõ êîîðäèíàòàõ:
ρ
eρ
ρ
ρ ∂
rot a =
∂ρ
a1
ρ
eϕ
∂
∂ϕ
a2 ρ
ρ
ρ
ez
er
ρ
r 2 sin θ
ρ
∂
∂
rot a =
∂z ;
∂r
a3
a1
ρ
eθ
r sin θ
∂
∂θ
a2r
ρ
eϕ
r
∂
∂ϕ .
a3r sin θ
Çàäà÷è
ρ
ρ
ρ
4.12. Âû÷èñëèòü äèâåðãåíöèþ ïîëÿ a = 2 cos θ r 2 er + sin θ eθ .
ρ
ρ
ρ
4.13. Âû÷èñëèòü ðîòîð ïîëÿ a = cos θ r 3 er + sin θ r 3 eθ .
4.14. Âû÷èñëèòü äèâåðãåíöèþ è ðîòîð ïîëÿ
ρ
ρ
ρ
a = 2 cos θ r 3 er + sin θ r 3 eθ .
ρ
ρ
ρ
ρ
4.15. Âû÷èñëèòü ðîòîð ïîëÿ a = cos ϕ eρ − sin ϕ ρ eϕ + ρ 2ez .
4.16. Âû÷èñëèòü ðîòîð îñåñèììåòðè÷íîãî ïîëÿ
ρ
ρ
ρ
a = ρ 2 zeρ − ρz 2ez .
4.17. Âû÷èñëèòü äèâåðãåíöèþ è ðîòîð ïîëÿ
ρ
a = {1 ρ, ρ cos ϕ , z sin ϕ} .
ρ ρ ρ
4.18. Êàæäûé èç áàçèñíûõ âåêòîðîâ eρ , eϕ , ez öèëèíäðè÷åñêîé ñèñòåìû êîîðäèíàò çàäàåò âåêòîðíîå ïîëå. Âû÷èñëèòü äèâåðãåíöèþ è ðîòîð êàæäîãî èç ýòèõ ïîëåé.
93
ρ ρ ρ
4.19. Êàæäûé èç áàçèñíûõ âåêòîðîâ er , eθ , eϕ ñôåðè÷åñêîé
ñèñòåìû êîîðäèíàò çàäàåò âåêòîðíîå ïîëå. Âû÷èñëèòü
äèâåðãåíöèþ è ðîòîð êàæäîãî èç ýòèõ ïîëåé.
ρ
4.20. Âû÷èñëèòü äèâåðãåíöèþ ïîëÿ a = ∇(cos θ r 2 ) .
4.21. Íàéòè ôóíêöèþ f (r ) , ïðè êîòîðîé öåíòðàëüíîå ïîëå
ρ
ρ
a = f (r )er áóäåò ñîëåíîèäàëüíûì.
4.22. Íàéòè ôóíêöèþ f ( ρ ) , ïðè êîòîðîé ðàäèàëüíî-öèρ
ρ
ëèíäðè÷åñêîå ïîëå a = f ( ρ )eρ áóäåò ñîëåíîèäàëüíûì.
4.23. Íàéòè ôóíêöèþ aϕ ( ρ, ϕ , z ) , ïðè êîòîðîé êîëüöåâîå
ρ
ρ
öèëèíäðè÷åñêîå ïîëå a = aϕ eϕ áóäåò ñîëåíîèäàëüíûì.
4.24. Íàéòè ôóíêöèþ f ( ρ, z ) , ïðè êîòîðîé ïðîäîëüíîå
îñåñèììåòðè÷íîå (îòíîñèòåëüíî îñè z) ïîëå
ρ
ρ
ρ
a = ρzeρ + f ( ρ, z )ez áóäåò ñîëåíîèäàëüíûì.
4.25. Íàéòè ôóíêöèþ f ( ρ, z ) , ïðè êîòîðîé ïðîäîëüíîå
îñåñèììåòðè÷íîå (îòíîñèòåëüíî îñè z) ïîëå
ρ
ρ
ρ
a = ρ 2 zeρ + f ( ρ, z )ez áóäåò ñîëåíîèäàëüíûì.
4.3.5. Âû÷èñëåíèå ïîòîêà
Èñïîëüçîâàòü êðèâîëèíåéíûå êîîðäèíàòû äëÿ âû÷èñëåíèÿ
ρ
ïîòîêà âåêòîðíîãî ïîëÿ a ÷åðåç ïîâåðõíîñòü S öåëåñîîáðàçíî,
êîãäà âñÿ ýòà ïîâåðõíîñòü èëè åå ÷àñòè ÿâëÿþòñÿ ó÷àñòêàìè êîîðäèíàòíûõ ïîâåðõíîñòåé äàííîé êîîðäèíàòíîé ñèñòåìû.  ýòîì
ρ ρ
ñëó÷àå ïîâåðõíîñòíûå èíòåãðàëû ∫∫ a ⋅ dS ñâîäÿòñÿ ê äâîéíûì
èëè òðîéíûì. Ýëåìåíòû ïëîùàäè dS ðàçëè÷íûõ êîîðäèíàòíûõ
ïîâåðõíîñòåé â öèëèíäðè÷åñêèõ è ñôåðè÷åñêèõ êîîðäèíàòàõ ïðèâåäåíû â êîíöå ðàçäåëà 4.1.
ρ
ρ
ρ
ρ
Ïðèìåð 1. Âû÷èñëèòü ïîòîê ïîëÿ a = ρeρ + ϕeϕ + zez ÷åðåç çàìêíóòóþ ïîâåðõíîñòü S, îáðàçîâàííóþ öèëèíäðîì ρ = R è ïëîñêîñòÿìè z = 0 è z = h.
94
Ðåøåíèå. ×åðåç áîêîâóþ ïîâåðõíîñòü öèëèíäðà Sáîê íåíóëåρ
âîé ïîòîê ñîçäàåò òîëüêî ρ-êîìïîíåíòà ïîëÿ a , à ÷åðåç òîðöû
Síèæ è Sâåðõ — òîëüêî z-êîìïîíåíòà, ñëåäîâàòåëüíî,
ρ
ρ





+  ∫∫ zdS  +  ∫∫ zdS  =
 ρ = R  Sниж  z = 0  Sвер х  z = h

∫∫ a ⋅ dS = ∫∫ aρ dS + ∫∫ az dS + ∫∫ az dS =  ∫∫ ρdS 
S
S бок
S ниж
 Sбок
S ве р х
= R ∫∫ dS + 0 + h ∫∫ dS = 2πR2 h + πR2h = 3πR2h
S бок
S ве р х
.
Ïðèìåð 2. Íåïîñðåäñòâåííî è ïî òåîðåìå Îñòðîãðàäñêîãî
ρ ρ
âû÷èñëèòü ïîòîê ïîëÿ a = rer ÷åðåç çàìêíóòóþ ïîâåðõíîñòü S,
îáðàçîâàííóþ âåðõíåé ïîëóñôåðîé r = R è ïëîñêîñòüþ z = 0.
Ðåøåíèå. Òàê êàê íà ïîâåðõíîñòè ñôåðû r = R, òî ïðè íåïîñðåäñòâåííîì âû÷èñëåíèè
∫∫ rdS = R ∫∫ dS = 2πR3 .
2πR 2
2πR 2
Ïî òåîðåìå Îñòðîãðàäñêîãî,
ρ ρ
ρ
∫∫ a ⋅ dS = ∫∫∫ divadV .
S
V
ρ
À òàê êàê div(rer ) = 3 , òî
ρ ρ
∫∫ a ⋅ dS = 3∫∫∫ dV = 3V = 2πR3 .
S
V
Ïðèìåð 3. Íåïîñðåäñòâåííî è ïî òåîðåìå Îñòðîãðàäñêîãî
ρ
ρ
ρ
âû÷èñëèòü ïîòîê ïîëÿ a = cos θ er + sin θ eθ ÷åðåç çàìêíóòóþ ïîâåðõíîñòü S, îáðàçîâàííóþ âåðõíåé ïîëóñôåðîé r = R è ïëîñêîñòüþ θ = π/2.
Ðåøåíèå.
ρ ρ
1. Íåïîñðåäñòâåííî. Èíòåãðàë ∫∫ a ⋅ dS ðàçáèâàåòñÿ íà äâà: ïî
ïîëóñôåðå Sñô è ïî «äíó» Säí, ïðè÷åì ÷åðåç ïîâåðõíîñòü Sñô
ïîòîê ñîçäàåòñÿ òîëüêî êîìïîíåíòîé ar, à ÷åðåç ïîâåðõíîñòü Säí
— òîëüêî êîìïîíåíòîé aθ:
95
ρ
ρ
∫∫ a ⋅ dS = ∫∫ cos θ dSr + ∫∫ sin θ dSθ ,
S
S сф
S дн
ãäå dSr = r 2sinθdθdϕ — ýëåìåíò ïëîùàäè êîîðäèíàòíîé ïîâåðõíîñòè r = const (ñôåðû), dSθ — ýëåìåíò ïëîùàäè êðóãà (äíà). À òàê
êàê íà ýòîì êðóãå θ = π/2, òî âòîðîé èíòåãðàë ðàâåí ïëîùàäè
«äíà», ò. å. πR2. Ïåðâûé æå èíòåãðàë ïðè r = const = R:
π / 2 2π


 ∫∫ cos θ dSr 
=
∫ ∫ cos θ R2 sin θ dθ dϕ = πR2 .


S
 r = R θ =0 ϕ =0
сф
Òàêèì îáðàçîì, îáùèé ïîòîê ÷åðåç çàìêíóòóþ ïîâåðõíîñòü
Ô = 2πR 2.
ρ
2. Ïî òåîðåìå Îñòðîãðàäñêîãî. Òàê êàê div a = (4 cos θ ) / r , à
ýëåìåíò îáúåìà øàðà dV = r 2 sin θ dr dθ dϕ , òî
ρ
ρ
ρ
∫∫ a ⋅ dS = ∫∫∫ divadV
S
V
R π / 2 2π
= 4∫
∫ ∫
0 0
0
cos θ r 2 sin θ dr dθ dϕ = 2πR2
.
r
Çàäà÷è
4.26. Íåïîñðåäñòâåííî è ïî òåîðåìå Îñòðîãðàäñêîãî âûρ
ρ ρ
÷èñëèòü ïîòîê ïîëÿ a = ρ e ρ + zeϕ ÷åðåç çàìêíóòóþ ïîâåðõíîñòü S, îáðàçîâàííóþ öèëèíäðîì ρ = R è ïëîñêîñòÿìè z = 0 è z = h.
4.27. Íåïîñðåäñòâåííî è ïî òåîðåìå Îñòðîãðàäñêîãî âûρ
ρ
ρ
ρ
÷èñëèòü ïîòîê ïîëÿ a = ρ e ρ + ρϕ eϕ − 2zez ÷åðåç çàìêíóòóþ ïîâåðõíîñòü S, îáðàçîâàííóþ öèëèíäðîì ρ = R,
ïîëóïëîñêîñòÿìè ϕ = 0 è ϕ = π/2 è ïëîñêîñòÿìè z = 0
è z = h.
4.28. Íåïîñðåäñòâåííî è ïî òåîðåìå Îñòðîãðàäñêîãî âûρ ρ
÷èñëèòü ïîòîê ïîëÿ a = re r ÷åðåç çàìêíóòóþ ïîâåðõíîñòü S, îáðàçîâàííóþ âåðõíåé ïîëóñôåðîé r = R è
ïëîñêîñòüþ θ = π/2.
96
ρ ρ
4.29. Äîêàçàòü, ÷òî ïîòîê ïîëÿ a = er / r 2 ÷åðåç çàìêíóòóþ
ïîâåðõíîñòü S ðàâåí 4π, åñëè ïîâåðõíîñòü S îõâàòûâàåò íà÷àëî êîîðäèíàò, è ðàâåí íóëþ, åñëè íå îõâàòûâàåò.
ρ
ρ
ρ
4.30. Âû÷èñëèòü ïîòîê ïîëÿ a = r 2θ er + rθ eθ ÷åðåç âíåøíþþ ñòîðîíó âåðõíåé ïîëóñôåðû r = R.
ρ
ρ
ρ
4.31. Âû÷èñëèòü ïîòîê ïîëÿ a = (2 cos θ er + sin θ eθ ) / r 3 ÷åðåç âíåøíþþ ñòîðîíó âåðõíåé ïîëóñôåðû r = R.
4.32. Íåïîñðåäñòâåííî è ïî òåîðåìå Îñòðîãðàäñêîãî âûρ
ρ
ρ
÷èñëèòü ïîòîê ïîëÿ a = cos θ e r − sin θ eθ ÷åðåç çàìêíóòóþ ïîâåðõíîñòü S, îáðàçîâàííóþ âåðõíåé ïîëóñôåðîé r = R è ïëîñêîñòüþ θ = π/2.
4.33. Íåïîñðåäñòâåííî è ïî òåîðåìå Îñòðîãðàäñêîãî âûρ ρ
ρ
÷èñëèòü ïîòîê ïîëÿ a = re r +r sin θ eθ ÷åðåç çàìêíóòóþ
ïîâåðõíîñòü S, îáðàçîâàííóþ âåðõíåé ïîëóñôåðîé
r = R è ïëîñêîñòüþ θ = π/2.
4.34. Íåïîñðåäñòâåííî è ïî òåîðåìå Îñòðîãðàäñêîãî âûρ
ρ
ρ
÷èñëèòü ïîòîê ïîëÿ a = r 2e r + R2r sin θ cos ϕ eϕ ÷åðåç
çàìêíóòóþ ïîâåðõíîñòü S, îáðàçîâàííóþ êîîðäèíàòíûìè ïîâåðõíîñòÿìè r = R, θ = π/2, ϕ = 0, ϕ = π/2.
4.35. Ïðÿìîóãîëüíàÿ ïëîùàäêà S ïðåäñòàâëÿåò ñîáîé ñå÷åíèå öèëèíäðà ρ ≤ R, 0 ≤ z ≤ h ïëîñêîñòüþ y = R/2.
ρ ρ
Âû÷èñëèòü ïîòîê ïîëÿ a = eρ / ρ ÷åðåç ýòó ïëîùàäêó.
4.36. Ïðÿìîóãîëüíàÿ ïëîùàäêà S ïðåäñòàâëÿåò ñîáîé ñå÷åíèå öèëèíäðè÷åñêîãî ñëîÿ R1 ≤ ρ ≤ R2, 0 ≤ z ≤ h ïîëóρ ρ
ïëîñêîñòüþ ϕ = π/2. Âû÷èñëèòü ïîòîê ïîëÿ a = eϕ / ρ
÷åðåç ýòó ïëîùàäêó.
4.3.6. Âû÷èñëåíèå ðàáîòû
Èñïîëüçîâàíèå êðèâîëèíåéíûõ êîîðäèíàò äëÿ âû÷èñëåíèÿ
ρ
ðàáîòû âåêòîðíîãî ïîëÿ a âäîëü êðèâîé L öåëåñîîáðàçíî, êîãäà
âñÿ ýòà êðèâàÿ èëè åå ÷àñòè ÿâëÿþòñÿ ó÷àñòêàìè êîîðäèíàòíûõ
ëèíèé äàííîé ñèñòåìû êîîðäèíàò.  ýòîì ñëó÷àå êðèâîëèíåéíûå
97
èíòåãðàëû ñâîäÿòñÿ ê îáûêíîâåííûì. Ýëåìåíòû dl êîîðäèíàòíûõ ëèíèé â öèëèíäðè÷åñêîé è ñôåðè÷åñêîé ñèñòåìàõ ïðèâåäåíû â êîíöå ðàçäåëà 4.1.
Ïóñòü â êðèâîëèíåéíûõ êîîðäèíàòàõ (q1, q2, q3) çàäàíî âåêρ
ρ
ρ
ρ
ρ
òîðíîå ïîëå a = a1e1 + a2e2 + a3e3 . Òîãäà îðèåíòèðîâàííûé ýëåìåíò dl
ïðîèçâîëüíîé êðèâîé L â ýòèõ êîîðäèíàòàõ
ρ
ρ
ρ
ρ
dl = H1dq1e1 + H2 dq2e2 + H3dq3e3 .
ρ
Ðàáîòà ïîëÿ a âäîëü êðèâîé L åñòü êðèâîëèíåéíûé èíòåãðàë
ρ ρ
∫ a ⋅ dl = ∫ (a1H1dq1 + a2 H2dq2 + a3 H3dq3 ) .
L
L
 ÷àñòíîñòè, â öèëèíäðè÷åñêèõ êîîðäèíàòàõ (q1 = ρ, q2 = ϕ, q3 = z;
H1 = 1, H2 = ρ, H3 = 1):
ρ ρ
∫ a ⋅ dl = ∫ (aρ dρ + ρaϕ dϕ + az dz ) ;
L
L
â ñôåðè÷åñêèõ êîîðäèíàòàõ (q1 = r, q2 = θ, q3 = ϕ; H1 = 1, H2 = r,
H3 = r sinθ):
ρ ρ
∫ a ⋅ dl = ∫ (ar dr + raθ dθ + r sin θ aϕ dϕ ) .
L
L
Ïðèìåð 1. Âû÷èñëèòü ðàáîòó (öèðêóëÿöèþ) ïîëÿ
ρ ρ
ρ
a = rer + r sin θ eϕ ïî îêðóæíîñòè r = R, θ = π/2.
Ðåøåíèå.
ρ ρ
∫ a ⋅ dl = ∫ (ar dr + r sin θ aϕ dϕ ) .
Íî òàê êàê íà îêðóæíîñòè r = R, dr = 0, θ = π/2, òî
ρ ρ
∫ a ⋅ dl
L
2π
= 0 + R2 sin 2(π / 2) ∫ dϕ = 2πR2 .
0
ρ
ρ
ρ
ρ
Ïðèìåð 2. Âû÷èñëèòü ðàáîòó ïîëÿ a = 4ρ sinϕ eρ + zeϕ + ρez îò
òî÷êè (0, π/4, 0) äî òî÷êè (R, π/4, 0) ïî ïðÿìîé L: ϕ = π/4,
z = 0.
Ðåøåíèå. Íà äàííîé êîîðäèíàòíîé ïðÿìîé z = 0, dz = 0,
ϕ = π/4, dϕ = 0; è òîãäà
98
R
ρ ρ
⋅
=
ρ
=
a
dl
a
d
ρ
∫
∫
∫ 4ρ sin(π / 4)dρ = R 2 .
L
L
0
Ïðèìåð
3.
Âû÷èñëèòü
öèðêóëÿöèþ
ïîëÿ
ρ
ρ
ρ
ρ
3
a = ρ sinϕ eρ + ρzeϕ + ρ ez ïî êîíòóðó Ñ : ρ = sinϕ, 0 ≤ ϕ ≤ π, z = 0.
Ðåøåíèå. Íà êîíòóðå Ñ èìååì: z = 0, dz = 0, ρ = sin ϕ ,
dρ = cosϕdϕ, 0 ≤ ϕ ≤ π. Òîãäà èñêîìàÿ öèðêóëÿöèÿ
ρ ρ
∫ a ⋅ dl
= ∫ (aρ dρ + ρaϕ dϕ + az dz ) = ∫ sin 2 ϕ cos ϕ dϕ + 0 + 0 =
π
sin 3 ϕ
= 0.
3 0
Çàäà÷è
ρ ρ
ρ
4.37. Âû÷èñëèòü öèðêóëÿöèþ ïîëÿ a = rer + ( R + r )sin θ eϕ
ïî îêðóæíîñòè r = R, θ = π/2 â íàïðàâëåíèè âîçðàñòàíèÿ óãëà ϕ.
ρ
ρ
ρ
ρ
4.38. Âû÷èñëèòü ðàáîòó ïîëÿ a = ρ cos ϕ eρ + ρ sin ϕ eϕ + ρez
ïî âèòêó âèíòîâîé ëèíèè L: ρ = R, 0 ≤ ϕ ≤ 2π, z = ϕ.
ρ ρ
ρ
ρ
4.39. Âû÷èñëèòü ðàáîòó ïîëÿ a = rer + 2θ cos ϕ eθ + ϕ eϕ ïî ïîëóîêðóæíîñòè L : r = R, ϕ = 0, 0 ≤ θ ≤ π.
ρ
ρ
ρ
4.40. Âû÷èñëèòü ðàáîòó ïîëÿ a = sin 2 θ er + sin 2θ eθ ïî ïðÿìîé L: ϕ = π/2, r = 1/(sinθ), π/6 ≤ θ ≤ π/2.
ρ ρ
ρ
ρ
4.41. Âû÷èñëèòü öèðêóëÿöèþ ïîëÿ a = zeρ + ρeϕ + ρez ïî îêðóæíîñòè ρ = R, z = 0.
ρ
ρ
ρ
4.42. Âû÷èñëèòü öèðêóëÿöèþ ïîëÿ a = cos ϕ eρ + ρ eϕ ïî
êîíòóðó ρ = sinϕ (0 ≤ ϕ ≤ π).
ρ
ρ
ρ
4.43. Âû÷èñëèòü ðàáîòó ïîëÿ a = (2 cos θ er + sin θ eθ ) / r 3 ïî
ïîëóîêðóæíîñòè L : r = R, ϕ = 0, 0 ≤ θ ≤ π.
4.3.7. Âû÷èñëåíèå ñêàëÿðíîãî ïîòåíöèàëà
Ïðåæäå ÷åì âû÷èñëÿòü ïîòåíöèàë âåêòîðíîãî ïîëÿ aρ â êðèâîëèíåéíûõ êîîðäèíàòàõ, íåîáõîäèìî óáåäèòüñÿ, ÷òî ýòî ïîëå
99
äåéñòâèòåëüíî ÿâëÿåòñÿ ïîòåíöèàëüíûì, ò. å. ïðîâåðèòü âûïîëíåíèå êàêîãî-ëèáî êðèòåðèÿ ïîòåíöèàëüíîñòè (ðàçä.3.1).  ÷àñòρ
íîñòè, åñëè îáëàñòü îïðåäåëåíèÿ ïîëÿ a îäíîñâÿçíà, òî äëÿ åãî
ρ
ïîòåíöèàëüíîñòè äîñòàòî÷íî, ÷òîáû rot a = 0 â ëþáîé òî÷êå åãî
îáëàñòè îïðåäåëåíèÿ.
ρ
Ïóñòü óñòàíîâëåíî, ÷òî çàäàííîå âåêòîðíîå ïîëå a(q1, q2 , q3 )
ÿâëÿåòñÿ ïîòåíöèàëüíûì. Òîãäà åãî ñêàëÿðíûé ïîòåíöèàë
u (q1, q2, q3) ìîæíî íàéòè ñëåäóþùèìè ñïîñîáàìè.
Ñïîñîá 1. Ñîñòàâëåíèå ïîëíîãî äèôôåðåíöèàëà.
Òàê êàê ïîëíûé äèôôåðåíöèàë ñêàëÿðíîé ôóíêöèè
u (q1, q2, q3) â êðèâîëèíåéíûõ êîîðäèíàòàõ
∂u dq + ∂u dq + ∂u dq
∂q1 1 ∂q2 2 ∂q3 3 ,
ρ
à â ñèëó ïîòåíöèàëüíîñòè ïîëÿ a îíî ïðåäñòàâèìî â âèäå (4.6)
du =
ρ
 1 ∂u 1 ∂u 1 ∂u 
a = {a1, a2 , a3} = −∇u = −
,
,
,
 H1 ∂q1 H2 ∂q2 H3 ∂q3 
òî
ai= −
1 ∂u
Hi ∂qi (i = 1, 2, 3).
(4.8)
È òîãäà
du = −(a1 H1dq1 + a2 H2dq2 + a3 H3dq3) .
(4.9)
ρ
Åñëè èç êîìïîíåíò ïîëÿ a â ïðàâîé ÷àñòè (4.9) óäàñòñÿ
ñîñòàâèòü ïîëíûé äèôôåðåíöèàë, òî îí è áóäåò ÿâëÿòüñÿ èñêîρ
ìûì ïîòåíöèàëîì u (q1, q2, q3) âåêòîðíîãî ïîëÿ a .
ßñíî, ÷òî ýòîò ñïîñîá õîðîø òîëüêî äëÿ ñðàâíèòåëüíî ïðîñòûõ âåêòîðíûõ ïîëåé, äëÿ êîòîðûõ ñòðóêòóðà ïîëíîãî äèôôåðåíöèàëà du(q1, q2, q3) ëåãêî óãàäûâàåòñÿ.
Âûðàæåíèå (4.9) â öèëèíäðè÷åñêèõ êîîðäèíàòàõ ïðèíèìàåò
âèä:
(
)
du( ρ, ϕ , z ) = − aρ dρ + aϕ ρdϕ + az dz ;
100
(4.10)
à â ñôåðè÷åñêèõ êîîðäèíàòàõ îíî èìååò âèä:
(
)
du(r, θ , ϕ ) = − ar dr + aθ rdθ + aϕ r sin θ dϕ .
(4.11)
ρ
ρ
ρ
Ïðèìåð 1. Íàéòè ïîòåíöèàë ïîëÿ a = −2r cos θ er + r sin θ eθ .
Ðåøåíèå. Íåòðóäíî óáåäèòüñÿ, ÷òî ýòî ïîëå ïîòåíöèàëüíî,
ρ
òàê êàê îáëàñòü åãî îïðåäåëåíèÿ îäíîñâÿçíà è rot a = 0 . Ïîäñòàâρ
ëÿÿ òåïåðü êîìïîíåíòû ïîëÿ a â âûðàæåíèå (4.11), ïîëó÷àåì:
du = 2r cos θ dr − r 2 sin θ dθ .
Çäåñü ïîä åäèíûé äèôôåðåíöèàë ëåãêî «çàãîíÿþòñÿ» âñå ïåðåìåííûå:
du = cos θ d (r 2 ) + r 2 d (cos θ ) = d (r 2 cos θ ) .
Òàêèì îáðàçîì, èñêîìûé ïîòåíöèàë u(r, θ , ϕ ) = r 2 cos θ + C .
ρ ρ ρ
ρ
Ïðèìåð 2. Íàéòè ïîòåíöèàë ïîëÿ a = eρ + eϕ / ρ + ez .
Ðåøåíèå. Ëåãêî óáåäèòüñÿ, ÷òî ðîòîð ýòîãî ïîëÿ ðàâåí íóëþ.
Ëåãêî çäåñü ñòðîèòñÿ è ïîëíûé äèôôåðåíöèàë:
du = −( dρ + dϕ + dz ) = − d ( ρ + ϕ + z ) .
ρ
Îäíàêî îáëàñòü îïðåäåëåíèÿ ïîëÿ a íåîäíîñâÿçíà: ïðè ρ = 0 (ò. å.
íà îñè z) îíî íå ñóùåñòâóåò. Âû÷èñëèâ æå öèðêóëÿöèþ ýòîãî
ïîëÿ ïî êàêîìó-ëèáî êîíòóðó, îõâàòûâàþùåìó îñü z, íàïðèìåð
ïî îêðóæíîñòè ρ = R, z = 0, ïîëó÷àåì:
ρ ρ
∫ a ⋅ dl = ∫ (aρ dρ + ρaϕ dϕ )ρ = R = ∫ dϕ = 2π .
À ðàç ðàáîòà ïî êîíòóðó íå ðàâíà íóëþ, òî ïîëå íå ïîòåíöèàëüíî.
Ôîðìàëüíî æå âû÷èñëåííàÿ ñêàëÿðíàÿ ôóíêöèÿ u = -(ρ + ϕ + z)
ïîòåíöèàëîì íå ÿâëÿåòñÿ, ïîñêîëüêó ïðè ïåðåõîäå ÷åðåç ïîëóïëîñêîñòü ϕ = 0 îíà èñïûòûâàåò ñêà÷îê 2π.
Ñïîñîá 2. Ðåøåíèå ñèñòåìû óðàâíåíèé.
ρ
Åñëè ñòðóêòóðà ïîëÿ a äîñòàòî÷íî ñëîæíà è óãàäàòü âèä
ïîëíîãî äèôôåðåíöèàëà ïðàâîé ÷àñòè (4.9) íå óäàåòñÿ, òî äëÿ
íàõîæäåíèÿ ïîòåíöèàëà u(q1,q2,q3) ïðèõîäèòñÿ ðåøàòü ñèñòåìó
äèôôåðåíöèàëüíûõ óðàâíåíèé (4.8), êîòîðàÿ â öèëèíäðè÷åñêèõ
êîîðäèíàòàõ ïðèíèìàåò âèä:
101
∂u = −a ∂u = −ρa ∂u
= −az ;
ρ ,
ϕ ,
∂ϕ
∂ρ
∂z
â ñôåðè÷åñêèõ êîîðäèíàòàõ ýòà ñèñòåìà èìååò âèä:
∂u = −a ∂u = −ra ∂u = −r sin θ a
ϕ.
r,
θ , ∂ϕ
∂r
∂θ
Ïðèìåð 3. Íàéòè ïîòåíöèàë ïîëÿ
(4.12)
(4.13)
ρ
ρ
ln ρ ρ
ρ

a = − 1 arctg z + cos ϕ  eρ + sin ϕ eϕ =
e
1 + z2 z .

ρ
Ðåøåíèå. Ïðåæäå âñåãî óáåäèìñÿ â ïîòåíöèàëüíîñòè ýòîãî
ρ
ïîëÿ. Íåñëîæíûå âû÷èñëåíèÿ ïîêàçûâàþò, ÷òî rot a = 0 . Îäíàêî
ρ
îáëàñòü îïðåäåëåíèÿ ïîëÿ a íåîäíîñâÿçíà: îíî íåîïðåäåëåíî íà
îñè z, ò. å. ïðè ρ = 0. Ñëåäîâàòåëüíî, íåîáõîäèìî ïðîâåðèòü ðàρ
âåíñòâî íóëþ öèðêóëÿöèè ïîëÿ a ïî êàêîìó-ëèáî êîíòóðó, îõâàòûâàþùåìó îñü z. Âûáåðåì â êà÷åñòâå òàêîãî êîíòóðà îêðóæíîñòü ρ = R, z = 0. Ýòî äàåò:
ρ
ρ
∫ a ⋅ dl
2π
= ∫ (aρ dρ + ρaϕ dϕ )ρ = R = R ∫ sin ϕ dϕ = 0 .
0
ρ
Ñëåäîâàòåëüíî, ïîëå a ÿâëÿåòñÿ ïîòåíöèàëüíûì. Èñêîìûé ïîòåíöèàë u (ρ, ϕ, z) ÿâëÿåòñÿ ðåøåíèåì ñèñòåìû (4.12):
 ∂u = 1 arctg z + cos ϕ ,
 ∂ρ ρ
 ∂u
 ∂ϕ = −ρ sin ϕ ,

 ∂u = ln ρ2 .
 ∂z 1 + z
(4.14)
Èíòåãðèðîâàíèå ýòîé ñèñòåìû ìîæíî íà÷èíàòü ñ ëþáîãî óðàâíåíèÿ, íî ïðîùå íà÷àòü ñ òðåòüåãî:
u = ln ρ ⋅ arctg z + C1( ρ, ϕ ) .
Ïîäñòàâëÿÿ ýòî âûðàæåíèå â ïåðâîå óðàâíåíèå (4.14), ïîëó÷àåì:
∂C ( ρ, ϕ ) 1
1
arctg z + 1
= arctg z + cos ϕ ,
ρ
∂ρ
ρ
102
îòêóäà
C1 = ρ cos ϕ + C2 (ϕ ) ,
ò. å.
u = ln ρ ⋅ arctg z + ρ cos ϕ + C2(ϕ ) .
Ïîäñòàâëÿÿ ïîñëåäíåå âûðàæåíèå âî âòîðîå óðàâíåíèå ñèñòåìû
(4.14), ïîëó÷àåì:
− ρ sin ϕ +
∂C2
= −ρ sin ϕ ,
∂ϕ
ò. å. Ñ2 = const = C. Òàêèì îáðàçîì, èñêîìûé ïîòåíöèàë
u( ρ, ϕ , z ) = ln ρ ⋅ arctg z + ρ cos ϕ + C .
Çàäà÷è
• Óñòàíîâèòü, ÿâëÿþòñÿ ëè ïîòåíöèàëüíûìè ñëåäóþùèå âåêòîðíûå ïîëÿ, è åñëè äà, òî âû÷èñëèòü èõ ïîòåíöèàëû ñ òî÷íîñòüþ äî àääèòèâíîé ïîñòîÿííîé:
ρ
4.44. a =
4.45.
4.46.
4.47.
4.48.
4.49.
ρ
ρ
eρ ;
ρ2 + 4
ρ
ρ
a = f ( ρ )eρ ;
ρ
ρ
ρ
ρ
a = (2ρ + sin ϕ )eρ + cos ϕ eϕ + 2 zez ;
ρ
ρ
a = ρeϕ ;
ρ
ρ
ρ
a = ρzeρ + ( ρ 2 / 2 − z 2 )ez ;
ρ ρ
a = eϕ / ρ ;
ρ
ρ eρ cos ϕ ρ
ρ
eϕ + 2 zez ;
4.50. a = eρ sin ϕ eρ +
ρ
ρ
ρ ϕρ
ρ
4.51. a = ρeρ + ρ eϕ + zez ;
ρ
ρ
4.52. a = f (r )er ;
103
ρ
ρ ρ
4.53. a = θ er + eθ ;
ρ
ρ
ρ
4.54. a = −2r cos θ er + r sin θ eθ ;
ρ
ρ
ρ
ρ
4.55. a = sin θ ⋅ cos ϕ er + cos θ ⋅ cos ϕ eθ − sin ϕ eϕ ;
ρ 2 cos θ ρ sin θ ρ
er + 3 eθ .
4.56. a =
r3
r
4.57. Âíóòðè áåñêîíå÷íîãî êðóãëîãî öèëèíäðà ρ ≤ R ðàâíîìåðíî ðàñïðåäåëåí ýëåêòðè÷åñêèé çàðÿä. Èçâåñòíî, ÷òî òàêîé öèëèíäð ñîçäàåò â ïðîñòðàíñòâå ýëåêòðè÷åñêîå ïîëå
ρ
при ρ ≤ R ,
ρ
kρ
E = E( ρ )eρ , ãäå E( ρ ) =  2
kR / ρ при ρ ≥ R
(çäåñü k — íåêîòîðûé êîýôôèöèåíò).
Âû÷èñëèòü ïîòåíöèàë u (ρ) ýòîãî ïîëÿ, ïîëàãàÿ, ÷òî
u (0) = 0.
4.58. Ïî îáúåìó øàðà ρ ≤ R ðàâíîìåðíî ðàñïðåäåëåí ýëåêòðè÷åñêèé çàðÿä. Èçâåñòíî, ÷òî òàêîé øàð ñîçäàåò â
ρ
ρ
ïðîñòðàíñòâå ýëåêòðè÷åñêîå ïîëå E = E(r )er , ãäå
kr / R3 при r ≤ R ,
E(r) = 
2
k / r при r ≥ R
(çäåñü k — íåêîòîðûé êîýôôèöèåíò).
Âû÷èñëèòü ïîòåíöèàë u (r) ýòîãî ïîëÿ îòíîñèòåëüíî
áåñêîíå÷íîñòè. ×åìó ðàâåí ïîòåíöèàë u0 â öåíòðå
øàðà?
4.59. Ïðè êàêîé ôóíêöèè f (ρ, z) îñåñèììåòðè÷íîå (îòíîρ
ρ
ρ
ñèòåëüíî îñè z) ïîëå a = ρ 2 zeρ + f ( ρ, z )ez áóäåò ïîòåíöèàëüíûì?
4.60. Ïðè êàêîé ôóíêöèè f (ρ, z) îñåñèììåòðè÷íîå (îòíîρ
ρ
ρ
ñèòåëüíî îñè z) ïîëå a = ρzeρ + f ( ρ, z )ez áóäåò ïîòåíöèàëüíûì?
104
4.3.8. Ïîñòðîåíèå âåêòîðíîãî ïîòåíöèàëà
ρ
ρ
Ïðåæäå ÷åì âû÷èñëÿòü âåêòîðíûé ïîòåíöèàë A ïîëÿ a ,
çàäàííîãî â êðèâîëèíåéíûõ êîîðäèíàòàõ, íåîáõîäèìî óáåäèòüρ
ñÿ, ÷òî ýòî ïîëå ñîëåíîèäàëüíî, ò. å. ÷òî div a = 0 .
Åñëè ñîëåíîèäàëüíîñòü çàäàííîãî âåêòîðíîãî ïîëÿ â îáëàñρ
òè V óñòàíîâëåíà, òî ïîñòðîåíèå åãî âåêòîðíîãî ïîòåíöèàëà A
ñîñòîèò â îòûñêàíèè êàêîãî-ëèáî ðåøåíèÿ âåêòîðíîãî äèôôåðåíöèàëüíîãî óðàâíåíèÿ (3.5), çàïèñàííîãî â ñîîòâåòñòâóþùèõ
êðèâîëèíåéíûõ êîîðäèíàòàõ (ñì. ðàçä. 4.3.4).  öèëèíäðè÷åñêèõ êîîðäèíàòàõ óðàâíåíèå (3.5) ýêâèâàëåíòíî ñëåäóþùèì òðåì ñêàëÿðíûì:
 ∂Az ∂
 ∂ϕ − ∂z ( ρAϕ ) = ρaρ ,
 ∂A ∂A
ρ
z
 ∂z − ∂ρ = aϕ ,

 ∂ ( ρA ) − ∂Aρ = ρA .
z
ϕ
 ∂ρ
∂ϕ
(4.15)
 ñôåðè÷åñêèõ êîîðäèíàòàõ ýòè óðàâíåíèÿ èìåþò âèä:
 ∂ ( A r sin θ ) − ∂ (rA ) = a r 2 sin θ ,
r
 ∂θ ϕ
∂ϕ θ
 ∂Ar ∂
 ∂ϕ − ∂r (r sin θ Aϕ ) = aθ r sin θ ,

 ∂ (rAθ ) − ∂Ar = raϕ .
∂θ
 ∂r
(4.16)
ρ
Íåèçâåñòíûå êîìïîíåíòû âåêòîðíîãî ïîëÿ A ñòðîÿòñÿ ñ ïîìîùüþ ïðîöåäóðû, àíàëîãè÷íîé (3.7)—(3.11) ðàçäåëà 3.2, íî ïðîäåëàííîé â ñîîòâåòñòâóþùèõ êðèâîëèíåéíûõ êîîðäèíàòàõ.  çàâèρ
ñèìîñòè îò òîãî, êàêàÿ èç êîìïîíåíò âåêòîðíîãî ïîòåíöèàëà A è
êàêàÿ èç êîíñòàíò èíòåãðèðîâàíèÿ áóäóò ïîëîæåíû ðàâíûìè íóëþ,
ñòðóêòóðû ïîëó÷åííûõ âåêòîðíûõ ïîòåíöèàëîâ áóäóò ñîâåðøåííî
ðàçëè÷íûìè. Íî âî âñåõ ñëó÷àÿõ êðèòåðèåì ïðàâèëüíîñòè ïîñòðîåρ
ρ ρ
íèÿ âåêòîðíîãî ïîòåíöèàëà A äîëæíî áûòü ðàâåíñòâî rot A = a .
105
ρ
ρ ρ
Ïðèìåð. Ïîñòðîèòü âåêòîðíûé ïîòåíöèàë A ïîëÿ a = er / r 2 .
Ðåøåíèå. Ýòî ýëåêòðè÷åñêîå ïîëå òî÷å÷íîãî çàðÿäà. Ëåãêî
ρ
óáåäèòüñÿ, ÷òî âî âñåé îáëàñòè åãî îïðåäåëåíèÿ div a = 0 , ñëåäîâàòåëüíî, ýòî ïîëå ÿâëÿåòñÿ ñîëåíîèäàëüíûì. Óðàâíåíèÿ (4.16)
äëÿ îòûñêàíèÿ íåèçâåñòíûõ êîìïîíåíò âåêòîðíîãî ïîòåíöèàëà
ρ
A ýòîãî ïîëÿ â ñôåðè÷åñêèõ êîîðäèíàòàõ ïðèíèìàþò âèä:
 ∂ ( Aϕ sin θ ) ∂Aθ sin θ
−
=
,

∂θ
∂ϕ
r

∂ (rAϕ )
 ∂Ar
 ∂ϕ = sin θ ∂r ,

 ∂ (rAθ ) = ∂Ar
∂θ
 ∂r
(çäåñü ïðè äèôôåðåíöèðîâàíèè ó÷òåíà íåçàâèñèìîñòü ïåðåìåííûõ r, θ, ϕ).
ρ
Ïîëüçóÿñü îòíîñèòåëüíûì ïðîèçâîëîì âûáîðà âåêòîðà A ,
ïîëîæèì äëÿ ïðîñòîòû Ar = 0. Òîãäà äëÿ îïðåäåëåíèÿ êîìïîíåíò
Aθ è Aϕ ïîëó÷àåì ñèñòåìó:
 ∂ ( Aϕ sin θ ) ∂Aθ sin θ
−
=
,

∂θ
∂ϕ
r
 ∂ (rA )

ϕ
 ∂r = 0,
 ∂ (rA )
θ
= 0.

 ∂r
(4.17)
Äâà ïîñëåäíèõ óðàâíåíèÿ ñèñòåìû (4.17) äàþò âûðàæåíèå:
Aϕ =
C1(θ , ϕ )
C (θ , ϕ )
, Aθ = 2
,
r
r
ãäå Ñ1 è Ñ2 — ïðîèçâîëüíûå äèôôåðåíöèðóåìûå ôóíêöèè, íî
òàêèå, ÷òîáû âûïîëíÿëîñü ïåðâîå óðàâíåíèå ñèñòåìû (4.17). Ïîýòîìó îäíó èç íèõ ìîæíî ïîëîæèòü ðàâíîé íóëþ, íàïðèìåð Ñ2.
Òîãäà è êîìïîíåíòà Àθ = 0; à ïîäñòàíîâêà Àϕ â ïåðâîå óðàâíåíèå
(4.17) äàåò âûðàæåíèå:
∂ (C1(θ , ϕ )sin θ )
= sin θ ,
∂θ
106
îòêóäà
C (ϕ )
C1 = − 1 + 3
tg θ sin θ .
Ïîëàãàÿ Ñ3 = 0, ïîëó÷àåì:
ρ 
1 
1
A = 0,0,−
,
ò.
å.
θ  .
r
tg θ
tg

ρ ρ
Íåñëîæíàÿ ïðîâåðêà ïîêàçûâàåò, ÷òî rot A = er / r 2 , ò. å. ÷òî ïîñòρ
ðîåííîå âåêòîðíîå ïîëå A äåéñòâèòåëüíî ÿâëÿåòñÿ âåêòîðíûì
ρ
ïîòåíöèàëîì èñõîäíîãî ïîëÿ a .
Åñëè ïîëîæèòü ðàâíîé íóëþ íå Ñ2, à Ñ1, òî íóëåâîé ñòàíåò
êîìïîíåíòà Àϕ, è âåêòîðíûé ïîòåíöèàë ïðèìåò âèä:
Aϕ = −
ρ  ϕ sin θ 
A = 0,−
,0 .
r


 ýòîì ñëó÷àå îí èìååò «íåïðèÿòíûé» ðàçðûâ íà ïîëóïëîñêîñòè
ϕ = 0.
Çàäà÷è
4.61. Ïîñòðîèòü âåêòîðíûé ïîòåíöèàë ýëåêòðè÷åñêîãî
ρ ρ
ïîëÿ E = eρ / ρ ïðÿìîé ðàâíîìåðíî çàðÿæåííîé íèòè.
4.62. Ïîñòðîèòü âåêòîðíûé ïîòåíöèàë ìàãíèòíîãî ïîëÿ
ρ ρ
B = eϕ / ρ ïðÿìîãî òîêà.
ρ
ρ
4.63. Ïîñòðîèòü âåêòîðíûé ïîòåíöèàë ïîëÿ a = ρeϕ .
4.64. Ïîñòðîèòü âåêòîðíûé ïîòåíöèàë îñåñèììåòðè÷íîãî
ρ
ρ
ρ
ïîëÿ a = ρzeρ − z 2ez .
4.65. Ïîñòðîèòü âåêòîðíûé ïîòåíöèàë îñåñèììåòðè÷íîãî
ρ
ρ
ρ
ïîëÿ a = ρ 2 zeρ − 3ρz 2ez / 2 .
4.66. Ïîñòðîèòü âåêòîðíûé ïîòåíöèàë ïîëÿ
ρ
θ eρ + sin θ eρ
E = 2 cos
ýëåêòðè÷åñêîãî äèïîëÿ.
r
r3
r3 θ
107
ρ ρ
4.67. Íàéòè âåêòîðíûé ïîòåíöèàë ïîëÿ a = rer .
4.3.9. Îïåðàòîð Ëàïëàñà
Îïåðàòîð Ëàïëàñà (ëàïëàñèàí) ñêàëÿðíîé ôóíêöèè
u (q1, q2, q3) â êðèâîëèíåéíûõ êîîðäèíàòàõ îïðåäåëÿåòñÿ êàê äèâåðãåíöèÿ îò åå ãðàäèåíòà:
∆u = div(grad u) = ∇ ⋅ ∇u .
Ïðèìåíÿÿ ôîðìóëû (4.6) è (4.7), ïîëó÷àåì:
∆u(q1, q2 , q3 ) =
 ∂  H2 H3 ∂u 
1
∂  H1 H3 ∂u  ∂  H1 H2 ∂u  

+

+


H1 H2 H3  ∂q1  H1 ∂q1  ∂q2  H2 ∂q2  ∂q3  H3 ∂q3  .
 öèëèíäðè÷åñêèõ êîîðäèíàòàõ (ρ, ϕ, z) ëàïëàñèàí ïðèîáðåòàåò âèä:
∆u =
1 ∂  ∂u  + 1 ∂ 2u + ∂ 2u
ρ 
ρ ∂ρ  ∂ρ  ρ 2 ∂ϕ 2 ∂z 2 .
(4.18)
 ñôåðè÷åñêèõ êîîðäèíàòàõ (r, θ, ϕ)
∆u =
∂  sin θ ∂u  +
∂ 2u
1 ∂  2 ∂u 
1
1
+
r
∂θ  r 2 sin 2 θ ∂ϕ 2 . (4.19)
r 2 ∂r  ∂r  r 2 sin θ ∂θ 
Åñëè ñêàëÿðíîå ïîëå u(q1,q2,q3) çàâèñèò òîëüêî îò ðàññòîÿíèÿ ρ äî íåêîòîðîé îñè, ò. å. u = u(ρ), òî îíî íàçûâàåòñÿ îñåâûì,
èëè öèëèíäðè÷åñêèì. Äëÿ òàêîãî ïîëÿ îò ëàïëàñèàíà (4.18) îñòàåòñÿ òîëüêî åãî ðàäèàëüíàÿ ÷àñòü:


∆u = ∆ ρu = 1 ∂  ρ ∂u  .
ρ ∂ρ  ∂ρ 
(4.20)
Åñëè ñêàëÿðíîå ïîëå u (q1, q2, q3) çàâèñèò òîëüêî îò ðàññòîÿíèÿ r äî íåêîòîðîãî öåíòðà Î, ò. å. u = u(r), òî îíî íàçûâàåòñÿ
öåíòðàëüíûì, èëè ñôåðè÷åñêèì. Äëÿ òàêîãî ïîëÿ îò ëàïëàñèàíà
(4.19) îñòàåòñÿ òîëüêî åãî ðàäèàëüíàÿ ÷àñòü:
∆u = ∆ r u =
1 ∂  2 ∂u  1 ∂ 2
r
=
(ur )
r 2 ∂r  ∂r  r ∂r 2
(4.21)
Ïðèìåð. Íàéòè îáùåå ðåøåíèå óðàâíåíèÿ Ëàïëàñà ∆u = 0,
çàâèñÿùåå òîëüêî îò ðàññòîÿíèÿ ρ äî íåêîòîðîé îñè.
108
Ðåøåíèå. Òàê êàê u = u(ρ), òî, ïðèìåíÿÿ ôîðìóëó (4.20),
ïîëó÷àåì:
1 ∂  ρ ∂u  =

 0.
ρ ∂ρ  ∂ρ 
Îòñþäà
ρ ∂u = const = C1 .
∂ρ
Ñëåäîâàòåëüíî,
u = C1 ln ρ + C2 .
Çàäà÷è
• Óñòàíîâèòü, ÿâëÿþòñÿ ëè ãàðìîíè÷åñêèìè ñëåäóþùèå ñêàëÿðíûå ïîëÿ:
4.68. u = 1/ρ;
4.72. u = 1/r;
4.69. u = lnρ;
4.73. u = lnr;
4.70. u = ρ2 cos2ϕ;
4.74. u = r2 sinθ;
4.71. u = ρ + Ccosϕ;
4.75. u = r cos2θ.
4.76. Âû÷èñëèòü ∆(rn), ãäå n — äåéñòâèòåëüíîå ÷èñëî.
4.77. Íàéòè îáùåå ðåøåíèå óðàâíåíèÿ Ëàïëàñà ∆u = 0, çàâèñÿùåå òîëüêî îò:
à) ðàññòîÿíèÿ r äî íåêîòîðîãî öåíòðà;
á) ïîëÿðíîãî óãëà θ ;
â) àçèìóòàëüíîãî óãëà ϕ .
4.78. Ïóñòü u = u (r). Íàéòè îáùåå ðåøåíèå óðàâíåíèÿ Ïóàññîíà ∆u = Ñ, ãäå Ñ — ïîñòîÿííàÿ.
4.79. Ïóñòü u = u(r). Íàéòè îáùåå ðåøåíèå óðàâíåíèÿ Ïóàññîíà ∆u = r n, ãäå n — äåéñòâèòåëüíîå ÷èñëî.
4.80. Ïóñòü u = u (z). Íàéòè îáùåå ðåøåíèå óðàâíåíèÿ Ïóàññîíà ∆u = z n, ãäå n — äåéñòâèòåëüíîå ÷èñëî.
ρ
ρ
4.81. Ïðè êàêîé ôóíêöèè u (ρ) âåêòîðíîå ïîëå a = u( ρ )eρ
áóäåò ëàïëàñîâûì?
ρ
ρ
4.82. Ïðè êàêîé ôóíêöèè u (r) âåêòîðíîå ïîëå a = u(r )er
áóäåò ëàïëàñîâûì?
109
4.83. Ïðè êàêîé ôóíêöèè f (ρ, z) îñåñèììåòðè÷íîå (îòíîρ
ρ
ρ
ñèòåëüíî îñè z) ïîëå a = ρzeρ + f ( ρ, z )ez áóäåò ëàïëàñîâûì?
4.84. Ïðè êàêîé ôóíêöèè f (ρ,z) îñåñèììåòðè÷íîå (îòíîρ
ρ
ρ
ñèòåëüíî îñè z) ïîëå a = ρ 2 zeρ + f ( ρ, z )ez áóäåò ëàïëàñîâûì?
4.85. Íàéòè óñòàíîâèâøååñÿ ðàñïðåäåëåíèå òåìïåðàòóðû
T (r) â îäíîðîäíîì ñôåðè÷åñêîì ñëîå, åñëè íà âíóòðåííåé ïîâåðõíîñòè ñëîÿ ðàäèóñîì R1 ïîääåðæèâàåòñÿ òåìïåðàòóðà T1, à íà âíåøíåé ïîâåðõíîñòè ðàäèóñîì R2 — òåìïåðàòóðà T2. Èçâåñòíî, ÷òî óñòàíîâèâøååñÿ ðàñïðåäåëåíèå òåìïåðàòóðû ïîä÷èíÿåòñÿ óðàâíåíèþ Ëàïëàñà ∆T = 0.
110
5. ÒÅÍÇÎÐÛ
5.1. Ïðåîáðàçîâàíèÿ áàçèñà.
Îïðåäåëåíèå òåíçîðà. Ñèììåòðèÿ òåíçîðà
ρ ρ ρ
Ïåðåõîä îò ñòàðîãî îðòîíîðìèðîâàííîãî áàçèñà ( е1 , e2 , e3 )
ρ′ ρ ′ ρ ′
ê íîâîìó ( е1 , e2 , e3 ) çàäàåòñÿ ìàòðèöåé ïåðåõîäà Ã = [γij]
(i, j = 1, 2, 3):
ρ
ρ
ei ′ = ∑ γ ij e j
(i = 1,2 ,3).
(5.1)
j
Ìàòðèöà Ã îáëàäàåò ñëåäóþùèìè ñâîéñòâàìè:
1. Ìàòðèöà ô îáðàòíîãî ïåðåõîäà îò íîâîãî áàçèñà ê
ñòàðîìó
ρ
ρ
ei = ∑ γ ij′ e j ′
j
ÿâëÿåòñÿ òðàíñïîíèðîâàííîé ìàòðèöåé Ã, ò. å. γ´ij = γji .
2. Ìàòðèöà Ã ´ ÿâëÿåòñÿ îáðàòíîé ìàòðèöåé Ã, ò. å.
à ´ = Ã Ò = à -1.
3.
∑γ
ki
1 при i = j ,
γ kj = ∑ γ ikγ jk = δ ij = 
 0 при i ≠ j .
Ìàòðèöû, îáëàäàþùèå òàêèì ñâîéñòâîì, íàçûâàþòñÿ îðòîãîíàëüíûìè.
4. det à = det à ´ = ±1.
Îïðåäåëåíèå. Òðîéêà çàíóìåðîâàííûõ ÷èñåë (x1, x2, x3), çàâèñÿùèõ
îò âûáîðà áàçèñà è èçìåíÿþùèõñÿ ïðè ïåðåõîäå îò
îäíîãî áàçèñà ê äðóãîìó ïî çàêîíó
xi′ = ∑ γ ij x j
(i = 1,2 ,3),
j
íàçûâàåòñÿ òåíçîðîì 1-ãî ðàíãà. Ñàìè ÷èñëà x1, x2, x3
íàçûâàþòñÿ êîìïîíåíòàìè ýòîãî òåíçîðà â äàííîì
áàçèñå.
111
×àñòíûì âàðèàíòîì òåíçîðà 1-ãî ðàíãà ÿâëÿåòñÿ âåêòîð.
Ñïðàâåäëèâî îáðàòíîå ïðåîáðàçîâàíèå:
xi = ∑ γ ij′ x′j ,
j
ãäå γ′ij — êîýôôèöèåíòû ìàòðèöû Ã ´ îáðàòíîãî ïðåîáðàçîâàíèÿ
áàçèñà.
Îïðåäåëåíèå. Äåâÿòü ÷èñåë, çàíóìåðîâàííûõ äâóìÿ èíäåêñàìè
(ìàòðèöà):
 a11
T =  a 21

 a 31
a 12
a 22
a 32
a 13 
a 23  ,

a 33 
çàâèñÿùèõ îò âûáîðà áàçèñà è ïðåîáðàçóþùèõñÿ ïðè
ïåðåõîäå îò îäíîãî áàçèñà ê äðóãîìó ïî çàêîíó
a kl′ = ∑ ∑ γ ki γ lj a ij
i
( k , l = 1,2 ,3),
(5.2)
j
íàçûâàþòñÿ òåíçîðîì 2-ãî ðàíãà Ò. Ñàìè ÷èñëà àij
íàçûâàþòñÿ êîìïîíåíòàìè ýòîãî òåíçîðà â äàííîì
áàçèñå.
×àñòíûì âàðèàíòîì òåíçîðà 2-ãî ðàíãà ÿâëÿåòñÿ íàáîð êîýôôèöèåíòîâ öåíòðàëüíîé ïîâåðõíîñòè 2-ãî ïîðÿäêà.
Àíàëîãè÷íî îïðåäåëÿþòñÿ òåíçîðû áîëåå âûñîêèõ ðàíãîâ.
Òàê íàïðèìåð, òåíçîð 3-ãî ðàíãà — ýòî îáúåêò, îïèñûâàåìûé
êóáè÷åñêîé ìàòðèöåé (3 x 3 x 3) êîýôôèöèåíòîâ àijk, ïðåîáðàçóþùèõñÿ ïðè ïîâîðîòàõ áàçèñà ïî çàêîíó
a ′pqr = ∑ ∑ ∑ γ pi γ qj γ rk a ijk .
i
j
k
Ôîðìóëà (5.2) äàåò çàêîí ïðåîáðàçîâàíèÿ êîìïîíåíò òåíçîðà Ò ïðè ïåðåõîäå îò ñòàðîãî áàçèñà ê íîâîìó. Ìàòðè÷íàÿ ôîðìà ýòîãî ïðåîáðàçîâàíèÿ èìååò âèä:
Ò ′ = ÃÒÃ -1.
112
Îïðåäåëåíèå. Åñëè ó òåíçîðà 2-ãî ðàíãà Ò êîìïîíåíòû îáëàäàþò
ñâîéñòâîì àij = aji , òî òåíçîð Ò íàçûâàåòñÿ ñèììåòðè÷íûì.
Ó ñèììåòðè÷íîãî òåíçîðà 2-ãî ðàíãà óæå íå 9, à òîëüêî 6
íåçàâèñèìûõ êîìïîíåíò.
Îïðåäåëåíèå. Åñëè ó òåíçîðà 2-ãî ðàíãà Ò êîìïîíåíòû îáëàäàþò
ñâîéñòâîì àij = -aji , òî òåíçîð Ò íàçûâàåòñÿ àíòèñèììåòðè÷íûì.
Èç ýòîãî îïðåäåëåíèÿ ñëåäóåò, ÷òî ó àíòèñèììåòðè÷íîãî
òåíçîðà äèàãîíàëüíûå ýëåìåíòû ài i = 0, è, ñëåäîâàòåëüíî, îí
èìååò âñåãî 3 íåçàâèñèìûõ êîìïîíåíòû:
TAS
 0
= − a12

 − a13
a12
0
− a 23
a13 
a 23 .

0 
Ñâîéñòâà ñèììåòðèè èíâàðèàíòíû îòíîñèòåëüíî ïðåîáðàçîâàíèé áàçèñà.
Ëþáîé òåíçîð Ò ìîæåò áûòü ïðåäñòàâëåí â âèäå ñóììû ñèììåòðè÷íîãî è àíòèñèììåòðè÷íîãî òåíçîðîâ: Ò = ÒS + TAS .
Çàäà÷è
5.1. Íàéòè ìàòðèöû ïðÿìîãî Ã è îáðàòíîãî Ã-1 ïðåîáðà-
ρ ρ
5.2.
5.3.
5.4.
5.5.
çîâàíèé îðòîíîðìèðîâàííîãî áàçèñà ( e1 , e2 ) ïðè åãî
ïîâîðîòå íà óãîë α ïðîòèâ ÷àñîâîé ñòðåëêè.
Äîêàçàòü, ÷òî ïðîèçâåäåíèå äâóõ îðòîãîíàëüíûõ ìàòðèö ÿâëÿåòñÿ òàêæå îðòîãîíàëüíîé ìàòðèöåé.
Äîêàçàòü, ÷òî det à = ±1, ãäå à — ìàòðèöà ïðåîáðàçîâàíèÿ îðòîíîðìèðîâàííîãî áàçèñà.
Äîêàçàòü, ÷òî êîýôôèöèåíòû (à1, à2, à3), çàäàþùèå
ïëîñêîñòü a1x1 + a2x2 + a3x3 = 1, îáðàçóþò òåíçîð 1-ãî
ðàíãà.
Äîêàçàòü, ÷òî òàáëèöà äåâÿòè êîýôôèöèåíòîâ [aij]
(i, j = 1, 2, 3), çàäàþùèõ öåíòðàëüíóþ ïîâåðõíîñòü 2-ãî
ïîðÿäêà
∑ ∑ a ij xi x j
i
= 1, îáðàçóåò òåíçîð 2-ãî ðàíãà.
j
113
5.6. Ïóñòü â íåêîòîðîì îðòîíîðìèðîâàííîì áàçèñå âåêòîð
ρ
x çàäàí êîìïîíåíòàìè (x1, x2, x3). Äîêàçàòü, ÷òî ÷èñëà
aij = xixj (i, j = 1, 2, 3) îáðàçóþò òåíçîð 2-ãî ðàíãà.
5.7. Ïóñòü â íåêîòîðîì îðòîíîðìèðîâàííîì áàçèñå âåê-
ρ ρ
òîðû x и y çàäàíû êîìïîíåíòàìè (x1, x2, x3) è (y1, y2 , y3).
Äîêàçàòü, ÷òî ÷èñëà aij = xi yj (i, j = 1, 2, 3) îáðàçóþò
òåíçîð 2-ãî ðàíãà.
ρ ρ ρ
5.8. Äîêàçàòü, ÷òî åñëè a , b и c — âåêòîðû, òî 33 = 27
5.9.
5.10.
5.11.
5.12.
5.13.
÷èñåë dijk = ai bj ck (i, j, k = 1, 2, 3) îáðàçóþò òåíçîð 3-ãî
ðàíãà.
Äîêàçàòü, ÷òî êîìïîíåíòû åäèíè÷íîãî òåíçîðà [δij]
íå ìåíÿþòñÿ ïðè ïîâîðîòå îðòîíîðìèðîâàííîãî áàçèñà, ò. å. ÷òî δ´ij = δij .
Äîêàçàòü, ÷òî êîìïîíåíòû ñôåðè÷åñêîãî òåíçîðà [λδij]
èíâàðèàíòíû îòíîñèòåëüíî ïîâîðîòîâ áàçèñà.
Äîêàçàòü èíâàðèàíòíîñòü ñêàëÿðíîãî ïðîèçâåäåíèÿ
ρ ρ
( x ⋅ y) â îðòîíîðìèðîâàííîì áàçèñå.
Ïîêàçàòü, ÷òî ëþáîé òåíçîð 2-ãî ðàíãà Ò ìîæåò áûòü
ïðåäñòàâëåí â âèäå ñóììû ñèììåòðè÷íîãî ÒS è àíòèñèììåòðè÷íîãî ÒAS òåíçîðîâ.
Òåíçîð 2-ãî ðàíãà Ò çàäàí ìàòðèöåé
 1 2 3
[ a ij ] =  4 5 6.


 7 8 9
Ðàçëîæèòü åãî íà ñèììåòðè÷íûé ÒS = [bij] è àíòèñèììåòðè÷íûé ÒAS = [cij] òåíçîðû.
5.14. Äîêàçàòü, ÷òî ñâîéñòâî ñèììåòðèè òåíçîðà èíâàðèàíòíî îòíîñèòåëüíî ïîâîðîòîâ áàçèñà, ò. å. åñëè, íàïðèìåð, òåíçîð Ò ÿâëÿåòñÿ ñèììåòðè÷íûì â áàçèñå
ρ ρ ρ
( e1 , e2 , e3 ) , òî îí ñèììåòðè÷åí â ëþáîì äðóãîì îð-
òîíîðìèðîâàííîì áàçèñå.
114
5.15. Äîêàçàòü, ÷òî åñëè ÷èñëà [aij] îáðàçóþò ñèììåòðè÷íûé, à ÷èñëà [bij] — àíòèñèììåòðè÷íûé òåíçîðû, òî
ñóììà S = ∑ ∑ a ij bij = 0.
i
j
ρ ρ
5.16. Â îðòîíîðìèðîâàííîì áàçèñå ( e1 , e2 ) ìàòðèöà òåíçî-
 6 2
. Íàéòè ìàòðèöó [a′ij]
3
ρ ρ
ýòîãî òåíçîðà â áàçèñå ( e1′ , e2′ ) , ïîâåðíóòîì íà óãîë
ðà Ò èìååò âèä: [ a ij ] = 
2
α = 45° ïðîòèâ ÷àñîâîé ñòðåëêè îòíîñèòåëüíî èñõîäíîãî.
ρ ρ
5.17. Â îðòîíîðìèðîâàííîì áàçèñå ( e1 , e2 ) ìàòðèöà òåíçî-
 0 2
. Íàéòè ìàòðèöó [a´ij]
3
ρ ρ
ýòîãî òåíçîðà â áàçèñå ( e1′ , e2′ ) , ïîâåðíóòîì íà óãîë
ðà Ò èìååò âèä: [ a ij ] = 
2
α = 90° ïðîòèâ ÷àñîâîé ñòðåëêè îòíîñèòåëüíî
èñõîäíîãî.
5.2. Ãëàâíûå îñè òåíçîðà
Òåíçîð 2-ãî ðàíãà Ò ìîæíî ðàññìàòðèâàòü êàê ëèíåéíûé
ρ
îïåðàòîð. Äåéñòâóÿ íà êàêîé-ëèáî âåêòîð x , îí ïîðîæäàåò íî-
ρ
ρ
âûé âåêòîð y , îòëè÷àþùèéñÿ îò x êàê ïî âåëè÷èíå, òàê è ïî
ρ
ρ
íàïðàâëåíèþ: y = Tx . Îäíàêî ìîãóò ñóùåñòâîâàòü òàêèå âåêòîðû
ρ
x , êîòîðûå ïîä äåéñòâèåì íà íèõ òåíçîðà Ò íå ìåíÿþòñÿ ïî
íàïðàâëåíèþ, à òîëüêî ïî âåëè÷èíå, ò. å. òàêèå, äëÿ êîòîðûõ
ρ
ρ
Tx = λx,
(5.3)
ãäå λ — íåêîòîðîå äåéñòâèòåëüíîå ÷èñëî.
ρ
Îïðåäåëåíèå. Åñëè äëÿ òåíçîðà Ò ñóùåñòâóþò âåêòîðû x , óäîâëåòâîðÿþùèå óñëîâèþ (5.3), òî îíè íàçûâàþòñÿ ñîáñòâåííûìè âåêòîðàìè òåíçîðà Ò. ×èñëà λ, ñîîòâåòñòâóþùèå ñîáñòâåííûì âåêòîðàì â çàäà÷å (5.3), íàçûâàþòñÿ ñîáñòâåííûìè çíà÷åíèÿìè òåíçîðà Ò.
115
Çàäà÷à îá îòûñêàíèè ñîáñòâåííûõ âåêòîðîâ è ñîáñòâåííûõ
çíà÷åíèé òåíçîðà Ò ðåøàåòñÿ ñëåäóþùèì îáðàçîì.
Ïåðåìíîæàÿ ìàòðèöó [aij] òåíçîðà Ò â äàííîì áàçèñå íà
ρ
âåêòîð x ïî ïðàâèëó «ñòðîêà íà ñòîëáåö», ïîëó÷àåì èç îïåðàòîðíîãî óðàâíåíèÿ (5.3) ñèñòåìó:
 ( a11 − λ )x1 + a12 x2 + a13 x3 = 0,

a 21 x1 + (a 22 − λ ) x2 + a 23 x3 = 0,
 a x + a x + ( a − λ ) x = 0.
32 2
33
3
 31 1
(5.4)
Ýòà ñèñòåìà èìååò íåòðèâèàëüíîå ðåøåíèå, ò. å. x1, x2, x3, íå ðàâíûå íóëþ îäíîâðåìåííî, åñëè åå îïðåäåëèòåëü ðàâåí íóëþ:
( a11 − λ )
a12
a13
a 21
( a 22 − λ )
a 23
a 31
a 32
( a 33 − λ )
= 0.
(5.5)
Åñëè òåíçîð Ò ÿâëÿåòñÿ ñèììåòðè÷íûì, òî âñå òðè êîðíÿ
óðàâíåíèÿ (5.5) ÿâëÿþòñÿ äåéñòâèòåëüíûìè, à òðè ñîîòâåòñòâóþùèå ãëàâíûå îñè (òðè ñîáñòâåííûõ âåêòîðà) òåíçîðà Ò âçàèìíî
ïåðïåíäèêóëÿðíû. Äàëåå âåçäå áóäåì ðàññìàòðèâàòü òîëüêî ôèçè÷åñêè âàæíûé âàðèàíò, êîãäà òåíçîð Ò ÿâëÿåòñÿ ñèììåòðè÷íûì, ò. å. aij = aji . Îïðåäåëèâ èç óðàâíåíèÿ (5.5) òðè ñîáñòâåííûå
çíà÷åíèÿ λ1, λ2 è λ3 (âîçìîæíî, ÷òî íåêîòîðûå èç íèõ èëè äàæå
âñå òðè áóäóò îäèíàêîâûìè) è ïîäñòàâèâ èõ ïîî÷åðåäíî â ñèñòåìó (5.4), íàéäåì äëÿ êàæäîãî èç íèõ êîìïîíåíòû ñîáñòâåííûõ
âåêòîðîâ. Íîðìèðîâêà ñîáñòâåííûõ âåêòîðîâ äàñò îðòîíîðìèðî-
ρ ρ ρ
âàííûé áàçèñ ( e1′ , e2′ , e3′ ) ãëàâíûõ îñåé òåíçîðà Ò.
 áàçèñå ãëàâíûõ îñåé ìàòðèöà òåíçîðà Ò ÿâëÿåòñÿ äèàãîíàëüíîé, ïðè÷åì íà åå ãëàâíîé äèàãîíàëè íàõîäÿòñÿ ñîáñòâåííûå çíà÷åíèÿ òåíçîðà Ò.
Ãëàâíûå îñè ñèììåòðè÷íîãî òåíçîðà ÿâëÿþòñÿ ãëàâíûìè
îñÿìè íåêîòîðîé öåíòðàëüíîé ïîâåðõíîñòè 2-ãî ïîðÿäêà; åå óðàâíåíèå â ñèñòåìå ãëàâíûõ îñåé ( x1′ , x2′ , x3′ ) íàçûâàåòñÿ
êàíîíè÷åñêèì:
λ1 x1′ 2 + λ 2 x2′ 2 + λ 3 x3′ 2 = 1.
116
Åñëè λ1, λ2 è λ3 ïîëîæèòåëüíû (âàðèàíò, íàèáîëåå âàæíûé â
ôèçèêå), òî ýòà ïîâåðõíîñòü ÿâëÿåòñÿ ýëëèïñîèäîì ñ ïîëóîñÿìè
a 1 = 1 / λ1 , a 2 = 1 / λ 2 , a 3 = 1 / λ 3 :
x1′ 2
+
a12
x2′ 2
a 22
x3′ 2
+
a 32
= 1.
Ïðè λ1 = λ2 — ýòî ýëëèïñîèä âðàùåíèÿ âîêðóã îñè x′3 ; ïðè
λ1 = λ 2 = λ 3 = l ýëëèïñîèä âûðîæäàåòñÿ â ñôåðó ðàäèóñîì
R= 1/ λ .
ρ ρ
Ïðèìåð. Â îðòîíîðìèðîâàííîì áàçèñå ( e1 , e2 ) ìàòðèöà òåí-
 2 1
. Íàéòè íîâûé îðòîíîðìèðîâàí2
çîðà Ò èìååò âèä: [ a ij ] = 
1
íûé áàçèñ, â êîòîðîì ýòà ìàòðèöà áóäåò äèàãîíàëüíîé, è çàïèñàòü åå. Èçîáðàçèòü íàïðàâëåíèÿ íîâûõ îðò â ñòàðîì áàçèñå (ãëàâíûå îñè òåíçîðà Ò ); çàïèñàòü ìàòðèöó Ã ïðåîáðàçîâàíèÿ áàçèñà;
çàïèñàòü óðàâíåíèå òåíçîðíîãî ýëëèïñîèäà (â äàííîì ñëó÷àå —
ýëëèïñà) â ñèñòåìå ãëàâíûõ îñåé.
Ðåøåíèå. Óðàâíåíèå (5.5), íàçûâàåìîå õàðàêòåðèñòè÷åñêèì,
äëÿ äàííîãî òåíçîðà èìååò âèä:
(2 − λ )
1
1
(2 − λ )
= 0,
èëè
λ 2 − 4λ + 3 = 0.
Êîðíè ýòîãî óðàâíåíèÿ: λ1 = 1, λ2 = 3. Ïðè λ = 1 ñèñòåìà (5.4)
ïðèíèìàåò âèä:
x1 + x2 = 0,

 x1 + x2 = 0.
 êà÷åñòâå åå ðåøåíèÿ ìîæíî âçÿòü, íàïðèìåð, òàêîå: x1 = 1,
x2 = -1. Íîðìèðóÿ ýòî ðåøåíèå, íàõîäèì åäèíè÷íûé ñîáñòâåí-
117
íûé âåêòîð, ñîîòâåòñòâóþùèé ñîáñòâåííîìó çíà÷åíèþ λ = 1:
1
ρ
e1′ =
{1,−1}. Ïðè λ = 3 ñèñòåìà (5.4) ïðèíèìàåò âèä:
2
− x1 + x2 = 0,

 x1 − x2 = 0,
ρ
îòêóäà, íàïðèìåð, x1 = 1, x2 = 1 è e2′ =
ρ ρ
1
{1,1}.
2
Ëåãêî âèäåòü, ÷òî e1′ ⋅ e2′ = 0, ò. å. ñîáñòâåííûå âåêòîðû òåíçîðà Ò âçàèìíî ïåðïåíäèêóëÿðíû.
ρ ρ
Ïîñêîëüêó ìû ïîëó÷èëè ðàçëîæåíèå íîâûõ îðò ( e1′ , e2′ ) ïî
ρ ρ
ñòàðîìó áàçèñó ( e1 , e 2 ) , òî ñ ó÷åòîì (5.1) ìàòðèöà à ïðåîáðàçî-
ρ ρ
ρ ρ
âàíèÿ áàçèñà ( e1 , e 2 ) â áàçèñ ( e1′ , e2′ ) èìååò âèä:


Г=


1
2
1
2
−
1 
2 .
1 

2 
Èç ðàçëîæåíèé íîâûõ îðò ïî ñòàðîìó áàçèñó âèäíî, ÷òî
ρ ρ
ρ ρ
áàçèñ ( e1′ , e2′ ) ïîâåðíóò îòíîñèòåëüíî èñõîäíîãî ( e1 , e 2 ) íà 45°
ïðîòèâ ÷àñîâîé ñòðåëêè.
Ìàòðèöà òåíçîðà Ò â ñèñòåìå ãëàâíûõ îñåé áóäåò èìåòü âèä:
1 0
[ a ij′ ] = 
.
 0 3
ρ
 2 1
óäëèíÿåò âåêòîð x1′ = {1,−1} (èëè

2
ρ
ρ
ρ
e1′ ) â 1 ðàç áåç ïîâîðîòà, à âåêòîð x2′ = {1,1} (èëè e2′ ) â 3 ðàçà
Èòàê, òåíçîð T = 
1
áåç åãî ïîâîðîòà:
118
 2 1 − 1 − 1
 1 2  1  = 1 1  ,

   
 2 1 1
1
 1 2 1 = 31.

 

Çàäà÷è
ρ ρ
5.18. Â îðòîíîðìèðîâàííîì áàçèñå ( e1 , e 2 ) ìàòðèöà òåíçî-
 6 2
. Íàéòè íîâûé îðòî3
ðà Ò èìååò âèä: [ a ij ] = 
2
íîðìèðîâàííûé áàçèñ, â êîòîðîì ýòà ìàòðèöà áóäåò
äèàãîíàëüíîé, è çàïèñàòü åå. Èçîáðàçèòü íàïðàâëåíèÿ íîâûõ îðò â ñòàðîì áàçèñå; çàïèñàòü ìàòðèöó Ã
ïðåîáðàçîâàíèÿ áàçèñà.
 0 2
.
3
5.19. Ðåøèòü çàäà÷ó 5.18 äëÿ ìàòðèöû [ a ij ] = 
2
1 1 3
5.20. Ðåøèòü çàäà÷ó 5.18 äëÿ ìàòðèöû [ a ij ] = 1 5 1 ,


 3 1 1
ρ ρ ρ
çàäàííîé â áàçèñå ( e1 , e2 , e3 ).
 2 4 0


5.21. Ðåøèòü çàäà÷ó 5.18 äëÿ ìàòðèöû [ a ij ] = 4 8 0 ,


 0 0 1
ρ ρ ρ
çàäàííîé â áàçèñå ( e1 , e2 , e3 ).
 0 0 1
5.22. Ðåøèòü çàäà÷ó 5.18 äëÿ ìàòðèöû [ a ij ] =  0 1 0 ,


1 0 0
ρ ρ ρ
çàäàííîé â áàçèñå ( e1 , e2 , e3 ).
119
5.3. Òåíçîðû â ôèçèêå
Çàäà÷è
5.23. Äîêàçàòü, ÷òî ìãíîâåííàÿ óãëîâàÿ ñêîðîñòü òâåðäîãî
òåëà ñ îäíîé íåïîäâèæíîé òî÷êîé ìîæåò áûòü ïðåäñòàâëåíà àíòèñèììåòðè÷íûì òåíçîðîì 2-ãî ðàíãà.
5.24. Íàéòè òåíçîð èíåðöèè I òîíêîãî îäíîðîäíîãî ñòåðæíÿ ìàññîé m è äëèíîé l , ïîëàãàÿ, ÷òî öåíòð âðàùåíèÿ ëåæèò â ñåðåäèíå ñòåðæíÿ. Îñü x3 âûáðàòü âäîëü
ñòåðæíÿ.
5.25. Íàéòè òåíçîð èíåðöèè I è ýëëèïñîèä èíåðöèè îäíîðîäíîãî äèñêà ìàññîé m, ðàäèóñîì R, ïîëàãàÿ, ÷òî
öåíòð âðàùåíèÿ ëåæèò â öåíòðå äèñêà, à îñü x3 íàïðàâëåíà âäîëü îñè äèñêà.
5.26. Íàéòè òåíçîð èíåðöèè I è ýëëèïñîèä èíåðöèè òîíêîé ïðÿìîóãîëüíîé ïëàñòèíêè ìàññîé m, ñî ñòîðîíàìè a è b, ïîëàãàÿ, ÷òî öåíòð âðàùåíèÿ ëåæèò â
öåíòðå ïëàñòèíêè, à îñü x3 íàïðàâëåíà ïåðïåíäèêóëÿðíî ïëîñêîñòè ïëàñòèíêè.
5.27. Íàéòè òåíçîð èíåðöèè I ñïëîøíîãî îäíîðîäíîãî êðóãëîãî öèëèíäðà ìàññîé m, ðàäèóñîì R, âûñîòîé h,
ïîëàãàÿ, ÷òî öåíòð âðàùåíèÿ ëåæèò â öåíòðå ìàññ
öèëèíäðà, à îñü x3 íàïðàâëåíà âäîëü îñè öèëèíäðà.
5.28. Íàéòè òåíçîð èíåðöèè I è ýëëèïñîèä èíåðöèè øàðà
ìàññîé m, ðàäèóñîì R, ïîëàãàÿ, ÷òî öåíòð âðàùåíèÿ
Î ëåæèò íà ïîâåðõíîñòè øàðà, à îñü x3 íàïðàâëåíà èç
òî÷êè Î ê öåíòðó øàðà.
5.29. Òåíçîð ïðîâîäèìîñòè Λ íåêîòîðîãî êðèñòàëëà â áà-
ρ ρ ρ
çèñå ( e1 , e 2 , e 3 ) èìååò êîìïîíåíòû
 7 −2 0 
[ λij ] = − 2 6 − 2 ⋅ 10 6 ( Ом ⋅ м) −1 .


 0 − 2 5 
Ê êðèñòàëëó ïðèëîæåíî ýëåêòðè÷åñêîå ïîëå Å = 1 Â/ì,
íàïðàâëåííîå âäîëü îñè x3. Íàéòè:
120
ρ
à) âåêòîð ïëîòíîñòè òîêà j â êðèñòàëëå â (À/ìì2) è
ρ
ρ
óãîë α ìåæäó âåêòîðàìè j è Е ;
á) ãëàâíûå çíà÷åíèÿ λ1, λ2, λ3 òåíçîðà ïðîâîäèìîñòè Λ
è ñîîòâåòñòâóþùèå ãëàâíûå íàïðàâëåíèÿ
ρ ρ ρ
( e1′ , e2′ , e3′ ) .
5.30. Ìåæäó ïëàñòèíàìè ïëîñêîãî êîíäåíñàòîðà íàõîäèò-
ρ ρ ρ
ñÿ äèýëåêòðè÷åñêèé êðèñòàëë.  áàçèñå ( e1 , e 2 , e 3 ) , â
ρ
êîòîðîì îðò e3 íàïðàâëåí ïåðïåíäèêóëÿðíî ïëàñòèíàì, êîìïîíåíòû òåíçîðà äèýëåêòðè÷åñêîé ïðîíèöàåìîñòè
 5 − 2 0
[ ε ij ] =  − 2 4 2.


2 3
 0
ρ
ρ
 êîíäåíñàòîðå ñîçäàíî ýëåêòðè÷åñêîå ïîëå E = Ee3 .
Íàéòè:
ρ
à) âåêòîð D â êðèñòàëëå è óãîë α ìåæäó âåêòîðàìè
ρ
ρ
E è D;
á) ãëàâíûå çíà÷åíèÿ ε1, ε2, ε3 òåíçîðà äèýëåêòðè÷åñêîé ïðîíèöàåìîñòè êðèñòàëëà è ñîîòâåòñòâóþùèå
ρ ρ ρ
ãëàâíûå íàïðàâëåíèÿ ( e1′ , e2′ , e3′ ) .
5.4. Ïðîñòåéøèå îïåðàöèè ñ òåíçîðàìè
Îïðåäåëåíèå. Ïóñòü aij è bkl — êîìïîíåíòû äâóõ òåíçîðîâ 2-ãî
ðàíãà. Ñîñòàâèì âñåâîçìîæíûå ïðîèçâåäåíèÿ ýòèõ
êîìïîíåíò:
cijkl = a ij bkl
121
(i , j , k , l = 1,2 ,3).
(5.6)
Òàáëèöà 34 ÷èñåë [ cijkl ] , ñîñòàâëåííûõ ïî ïðàâèëó
(5.6), îáðàçóåò òåíçîð 4-ãî ðàíãà, íàçûâàåìûé ïîëíûì ïðîèçâåäåíèåì òåíçîðîâ [aij] è [bkl]: Ñ = ÀÂ.
Òåíçîðíîå ïðîèçâåäåíèå íåêîììóòàòèâíî, ò. å. ÀÂ ≠ ÂÀ.
Ïðàâèëî (5.6) îòíîñèòñÿ ê òåíçîðàì ëþáîãî ðàíãà. Òàê, íàïðèìåð, åñëè êîýôôèöèåíòû aij îáðàçóþò òåíçîð 2-ãî ðàíãà, à
êîýôôèöèåíòû bk — òåíçîð 1-ãî ðàíãà, òî 33 = 27 êîýôôèöèåíòîâ cijk = aijbk (i, j, k = 1, 2, 3) îáðàçóþò òåíçîð 3-ãî ðàíãà.
Ðàíã ïîëíîãî ïðîèçâåäåíèÿ òåíçîðîâ ðàâåí ñóììå ðàíãîâ
ñîìíîæèòåëåé: rang C = rang A + rang B.
Îïðåäåëåíèå. Ñâåðòûâàíèåì íàçûâàåòñÿ ïðåîáðàçîâàíèå òåíçîðà
ïóòåì ñóììèðîâàíèÿ åãî êîìïîíåíò ïî êàêèì-ëèáî äâóì
èíäåêñàì. Ïðè ýòîì ðàíã òåíçîðà ïîíèæàåòñÿ íà 2.
Èç ýòîãî îïðåäåëåíèÿ ñëåäóåò, ÷òî ñâåðòûâàíèå ìîæíî ïðîèçâîäèòü òîëüêî ó òåíçîðîâ ðàíãà íå ìåíüøå äâóõ.
Îïåðàöèþ ñâåðòûâàíèÿ ìîæíî ïðèìåíÿòü ê òåíçîðó íåñêîëüêî ðàç, ïîêà åãî ðàíã íå ñòàíåò ìåíüøå äâóõ. Òàêèì îáðàçîì,
òåíçîð ÷åòíîãî ðàíãà ìîæåò áûòü ñâåðíóò äî ñêàëÿðà, à òåíçîð
íå÷åòíîãî ðàíãà — òîëüêî äî âåêòîðà.
Ïðèìåð 1. Ïóñòü 33 = 27 ÷èñåë aijk (i, j, k = 1, 2, 3) îáðàçóþò
òåíçîð 3-ãî ðàíãà. Òîãäà åãî ñâåðòêà ïî äâóì ïåðâûì èíäåêñàì
äàñò òåíçîð 1-ãî ðàíãà (âåêòîð)
bk = ∑ a iik = a11k + a 22 k + a 33k
( k = 1,2 ,3).
i
Ïðèìåð 2. Ñâåðòêîé òåíçîðà 2-ãî ðàíãà ÿâëÿåòñÿ ñêàëÿð:
a = ∑ a ii = a11 + a 22 + a 33 .
i
Îïðåäåëåíèå. Ñêàëÿðíûì ïðîèçâåäåíèåì òåíçîðîâ íàçûâàåòñÿ îïåðàöèÿ óìíîæåíèÿ ýòèõ òåíçîðîâ ñ ïîñëåäóþùèì ñâåðòûâàíèåì ïî èíäåêñàì, îòíîñÿùèìñÿ ê ðàçíûì ñîìíîæèòåëÿì.
Ïðèìåð 3. Ñêàëÿðíîå ïðîèçâåäåíèå òåíçîðà 2-ãî ðàíãà [aij]
íà âåêòîð [bk] ñî ñâåðòûâàíèåì ïî ïîñëåäíèì èíäåêñàì äàñò íî-
ρ
ρ
âûé âåêòîð c = A ⋅ b ñ êîìïîíåíòàìè ci = ∑ a ij b j
j
122
(i = 1,2 ,3).
Ýòî èçâåñòíàÿ îïåðàöèÿ óìíîæåíèÿ ìàòðèöû íà âåêòîð ïî ïðàâèëó «ñòðîêà íà ñòîëáåö».
Ïðèìåð 4. Ñêàëÿðíîå ïðîèçâåäåíèå äâóõ òåíçîðîâ 2-ãî ðàíãà [aij] è [bij] ñî ñâåðòûâàíèåì ïî ïàðå ðàçíîïîçèöèîííûõ èíäåêñîâ äàñò íîâûé òåíçîð 2-ãî ðàíãà Ñ = À⋅Â ñ êîìïîíåíòàìè
cik = ∑ a ij b jk (i , k = 1,2 ,3). Ýòî èçâåñòíàÿ îïåðàöèÿ ïåðåìíîæåj
íèÿ ìàòðèö ïî ïðàâèëó «ñòðîêà íà ñòîëáåö», äàþùàÿ íîâóþ ìàòðèöó.
ρ
Îïðåäåëåíèå. Òåíçîð 2-ãî ðàíãà ∇a , îïðåäåëÿåìûé êàê ïîëíîå
ïðîèçâåäåíèå
ñèìâîëè÷åñêîãî
âåêòîðà
 ∂
∂
∂  íà âåêòîð aρ = a , a , a è èìå{ 1 2 3}
,
,
∇=

 ∂x1 ∂x2 ∂x3 
∂a
ρ
þùèé êîìïîíåíòû (∇a ) ij = i (i , j = 1,2 ,3) , íàçûâà∂x j
ρ
åòñÿ ãðàäèåíòîì âåêòîðíîãî ïîëÿ a .
ρ
Òåíçîð ∇a ÿâëÿåòñÿ ìåðîé íåîäíîðîäíîñòè âåêòîðíîãî ïîëÿ
 ∂u ∂u ∂u 
ρ
,
,
a , ïîäîáíî òîìó, êàê âåêòîð ∇u = 
 ÿâëÿåòñÿ
 ∂x1 ∂x2 ∂x3 
ìåðîé íåîäíîðîäíîñòè ñêàëÿðíîãî ïîëÿ u ( x1 , x2 , x3 ).
ρ
ρ
ρ
Çàìå÷àíèå. ∇a ≠ ∇ ⋅ a = div a.
Ïîäîáíî òîìó, êàê â ðàçäåëå 1.3 ïðåäñòàâëÿëàñü ïðîèçâîäíàÿ ñêàëÿðíîãî ïîëÿ u( x1 , x2 , x3 ) ïî íàïðàâëåíèþ, çàäàâàåìîìó
ρ ∂u ρ
åäèíè÷íûì âåêòîðîì l : = l ⋅ ∇u (ôîðìóëà (1.6), ìîæíî ââåñòè
∂λ
ρ
ïîíÿòèå ïðîèçâîäíîé âåêòîðíîãî ïîëÿ a ( x1 , x2 , x3 ) ïî íàïðàâëåρ
ρ
íèþ l êàê ñêàëÿðíîå ïðîèçâåäåíèå åäèíè÷íîãî âåêòîðà l íà
òåíçîð
ρ
∇a :
123
ρ
∂a ρ ρ
= l ⋅ ∇ a.
∂l
 ðåçóëüòàòå ýòîé îïåðàöèè ïîëó÷àåòñÿ âåêòîð
ρ
∂a
ñ êîìïîíåíòàìè
∂l
ρ
ρ
∂a
 ∂a 
  = ∑ l j (∇a )ij = ∑ l j i (i = 1,2,3).
∂
l
∂
xj
 i
j
j
ρ
∂a
Âèäíî, ÷òî âåêòîð
— ýòî ñâåðòêà ïîëíîãî ïðîèçâåäåíèÿ âåê∂l
ρ
ρ
òîðà l íà òåíçîð âòîðîãî ðàíãà ∇a .
Çàäà÷è
5.31. Íàéòè ñâåðòêó òåíçîðà Ò, çàäàííîãî ìàòðèöåé
 1 2 3
[ a ij ] =  4 5 6.


 7 8 9
ρ
5.32. Íàéòè ñâåðòêó òåíçîðà ∇a .
5.33. Äîêàçàòü, ÷òî ñâåðòêîé òåíçîðà 3-ãî ðàíãà ÿâëÿåòñÿ
òåíçîð 1-ãî ðàíãà.
5.34. Òåíçîð 3-ãî ðàíãà Ò = ÀÂ, ãäå òåíçîðû âòîðîãî ðàíãà
À è ïåðâîãî ðàíãà Â çàäàíû êîìïîíåíòàìè:
 0
 1 2 3


A = [ a ij ] = 4 5 6 , B = [ bk ] =  1.

 

 2
 7 8 9
Íàéòè ñâåðòêó òåíçîðà Ò ïî äâóì ïîñëåäíèì èíäåêñàì.
5.35. Âû÷èñëèòü
ãðàäèåíò
âåêòîðíîãî
ïîëÿ
ρ
ρ
ρ
a = − x1 e1 + x2 e2 .
124
5.36. Âû÷èñëèòü ïðîèçâîäíóþ âåêòîðíîãî ïîëÿ
ρ
ρ
ρ
ρ
a = − x2 e1 + x1e 2 ïî íàïðàâëåíèþ ðàäèóñà-âåêòîðà r .
5.37. Âû÷èñëèòü ïðîèçâîäíóþ âåêòîðíîãî ïîëÿ
ρ
ρ
ρ
ρ
r = x1 e1 + x2 e2 + x3 e3 ïî íàïðàâëåíèþ, çàäàííîìó
ρ
åäèíè÷íûì âåêòîðîì l .
125
ÎÒÂÅÒÛ
1. Ñêàëÿðíîå ïîëå
1.1.
1.2.
1.3.
1.4.
1.5.
1.6.
1.7.
1.8.
1.9.
1.10.
1.11.
1.12.
1.13.
1.14.
1.15.
1.16.
1.17.
1.18.
1.19.
1.20.
1.21.
1.22.
1.23.
1.24.
Ïàðàáîëîèäû âðàùåíèÿ: z = C— x2 — y2.
Êðóãîâûå êîíóñû: z2 = C2 (x2 + y2).
Îäíîïîëîñòíûå ãèïåðáîëîèäû: x2 + y2 — z2 = C2.
Ýëëèïòè÷åñêèå öèëèíäðû: 4y2 + 9z2 = C2.
Êîíöåíòðè÷åñêèå ñôåðû: x2 + y2 + z2 = C2.
Ñåìåéñòâî ïàðàëëåëüíûõ ïëîñêîñòåé:
x
y
z
a1
a2
a3 = C
b1
b2
b3
.
Ãèïåðáîëè÷åñêèå ïàðàáîëîèäû: xy = Cz.
Ïëîñêîñòè, ïðîõîäÿùèå ÷åðåç îñü z.
Ñåìåéñòâî ïàðàëëåëüíûõ ïðÿìûõ: 2x — y = C.
Ïó÷îê ïðÿìûõ: y = Cx (C ≥ 0).
Ñåìåéñòâî ïàðàáîë: y2 = Cx.
Ñåìåéñòâî ãèïåðáîë: x2 — y2 = C.
Ñåìåéñòâî îêðóæíîñòåé ñ öåíòðàìè íà îñè x:
(x — C)2 + y2 = C2.
Ñåìåéñòâî ýëëèïñîâ: x2 + 9 (y—1)2 = C + 9.
Ñåìåéñòâî ïàðàáîë: y = (1 + C) — (x — C)2/C.
Ñåìåéñòâî ãèïåðáîë ñ àñèìïòîòàìè y = ±2x è ôîêóñàìè íà îñè x.
r1 + r2 = C, ãäå r1 è r2 — ðàññòîÿíèÿ îò ïåðåìåííîé
òî÷êè äî ôèêñèðîâàííûõ òî÷åê Ì1(0, 0) è Ì2(1, 0);
ïðè Ñ = 1 — ýòî îòðåçîê Ì1Ì2, ïðè Ñ > 1 — ñåìåéñòâî ýëëèïñîâ ñ ôîêóñàìè â òî÷êàõ Ì1 è Ì2.
Îêðóæíîñòü: x2 + y2 = 34.
Ãèïåðáîëà: 4x2 — y2 = 15.
Ïàðà ïðÿìûõ: 2x + y = 0, 2x — y = 0.
Ýëëèïñ: x2 + 9(y — 1)2 = 45.
Ïàðàáîëà: (x — 2)2 = y + 3.
Îêðóæíîñòü: (x — 2)2 + y2 = 4.
—.
126
1.25. (x2 + y2)2 = 2C2(x2 — y2); èëè, â ïîëÿðíûõ êîîðäèíàòàõ:
r = C cos 2ϕ .
1.26. Îêðóæíîñòü, ïðîõîäÿùàÿ ÷åðåç òî÷êè Ì1 è Ì2.
1.27. 6.
1.33. − 2 / 2 .
1.28. 15 / 5 .
1.29. 128/13.
1.34. ( 3 + 1) / 4 .
1.35. 1/4.
1.30. -1/25.
1.36. 3 2 / 5 .
1.31.
2 / 4.
1.37. 3 2 / 82 .
1.32. e3 / 3 .
1.38. — .
1.39. 349 / (18 14 ) .
ρ ρ
∂u = − 1 cos(lρ, rρ) ∂u = 0
1.40.
; ∂l
ïðè l ⊥r .
2
∂l
r
∂u = u′ cos(lρ, rρ)
.
1.51. 2 3 / 3 .
1.41.
r
∂l
1.42.
1.43.
1.44.
1.45.
1.46.
1.47.
1.48.
1.49.
∂u = 20 5
.
∂r
ρ
ez .
θ = π.
π/4.
arccos (-8/9).
cosθ ≈ -0,2; θ ≈ 101,5o.
θ = 0.
π/2.
1.50. 1.
1.52. 7 17 / 34 .
1.53.
1.54.
1.55.
1.56.
1.57.
1.58.
1.59.
1.60.
2.
—
M (-2, 1, 1).
a) xy = z2; á) x = y = z.
Íà ñôåðå r = 1.
1/9; -1/27.
4.
14 .
∂u = (∇u) ⋅ (∇v ) / ∇v ∂u = 0
;
ïðè ∇u⊥∇v .
∂l
∂l
ρ
ρ
1.62. r / r .
1.65. ez .
ρ
ρ ρ
1.63. −2r / r 4 .
1.66. a × b .
ρ
ρρ ρ ρρ ρ
1.64. nr ( n −2)r .
1.67. a(b ⋅ r ) + b (a ⋅ r ) .
1.61.
127
ρρ ρ
ρ
ρ ρ
a 3r (a ⋅ r )
−
b×a .
1.68. r 3
.
1.69.
5
r
ρ
ρ ρρ
2
1.70. 2a r − 2(a ⋅ r )a . Ïîäñêàçêà. Ïðåäñòàâèòü èñõîäíîå âûðàæåíèå â âèäå äâîéíîãî âåêòîðíîãî ïðîèçâåäåíèÿ,
è ïîñëå åãî ðàñêðûòèÿ âîñïîëüçîâàòüñÿ ðåçóëüòàòîì
çàäà÷è 1.67.
1.71. — .
1.72. — .
1.73. Ïîäñêàçêà. Ââåñòè ñêàëÿðíûå ïîëÿ u = x 2 — y 2
è v = xy.
1.74. — .
1.75. Ïîäñêàçêà. Ó÷åñòü çàäà÷ó 1.74.
1.76. Ïîäñêàçêà. Ó÷åñòü çàäà÷ó 1.74.
1.77. — .
1.78. — .
1.79. 60î. Ïîäñêàçêà.Ââåñòè ñêàëÿðíîå ïîëå u = x2 + y2 — z.
1.80. 120î. Ïîäñêàçêà. Ââåñòè ñêàëÿðíîå ïîëå u = x2 + y2 + z2.
1.81. — .
1.82. — .
1.83. — .
2. Âåêòîðíîå ïîëå
2.1. y = Cx — ðàäèàëüíûå ëó÷è, íàïðàâëåííûå îò öåíòðà.
2.2. xy = C — ãèïåðáîëû ñ àñèìïòîòàìè x = 0 è y = 0, íàïðàâëåííûå â ñòîðîíû y = ±∞.
2.3. y2 — x2 = C — ãèïåðáîëû ñ àñèìïòîòàìè y = ±x , îðèåíòèðîâàííûå âäîëü àñèìïòîòû y = x îò öåíòðà.
2.4. x2 + y2 = R2 — îêðóæíîñòè, îðèåíòèðîâàííûå ïðîòèâ
÷àñîâîé ñòðåëêè.
2.5. y = Cx — ðàäèàëüíûå ëó÷è, íàïðàâëåííûå ñëåâà íàïðàâî.
2.6. y = Cx2 — ïàðàáîëû, âåòâè êîòîðûõ îðèåíòèðîâàíû â
ñòîðîíû îò òî÷êè (0, 0).
2.7. y = x2 + C — ïàðàáîëû, îðèåíòèðîâàííûå ñëåâà íàïðàâî.
2.8.
x 2 + y 2 = C ⋅ exp(arctg( y / x )) ; èëè, â ïîëÿðíûõ êîîð-
äèíàòàõ: ρ = Ceϕ — ëîãàðèôìè÷åñêèå ñïèðàëè. Ïîä128
ñêàçêà. Äëÿ èíòåãðèðîâàíèÿ äèôôåðåíöèàëüíîãî óðàâ-
2.9.
2.10.
2.11.
2.12.
2.13.
2.14.
2.15.
2.16.
2.17.
2.18.
2.19.
2.20.
íåíèÿ y ′ = f ( x, y ) ââåñòè íîâóþ ôóíêöèþ u = y/x,
ñîõðàíèâ àðãóìåíò x.
xy = C — ãèïåðáîëû.
x2 + y2 = R2 — îêðóæíîñòè.
x2 — y2 = C — ãèïåðáîëû.
y = Cx4.
x2 + 2y2 = C2 — ýëëèïñû.
y = Cx — ëó÷è, ïðîõîäÿùèå ÷åðåç íà÷àëî êîîðäèíàò.
x2 + y2 = C2 — êîíöåíòðè÷åñêèå îêðóæíîñòè ñ îáùåé
îñüþ z.
x = 0, y2 + 2z2 = 3 — ýëëèïñ â ïëîñêîñòè x = 0, âçàèìíî ïåðïåíäèêóëÿðíûé ñ ñåìåéñòâîì ïàðàáîë z = Cy2
â ýòîé æå ïëîñêîñòè.
πR2H.
2.27. πR2az.
2
πR H.
2.28. —.
—
2.29. 3l 4.
2
2πR h.
2.30. 3l 5.
2πR2 .
2.21. 4π.
2.31.
2.22. 4πR3f (R).
2.32. 4π 3 9 .
(
)
2.23. 2πk 1 − 1 1 + ( R h)2 .
2.24.
2.25.
2.26.
2.37.
2.38.
2.39.
2.40.
2.41.
2.42.
2.43.
2.33. -4.
2π .
2.34. 9/2.
πR2az.
2.35. 27/2.
2àz.
2.36. 2πR2h
2. Ïîäñêàçêà. Âîñïîëüçîâàòüñÿ ïðèìåðîì 1 ðàçä. 2.2.
ρ ρ
3.
2.44. (c ⋅ r ) f ′ r .
2/r.
2.45. 0.
ρ ρ
lnr + 1.
2.46. 2(a ⋅ c ) .
ρ ρ
ρ ρ
2.47. 2(a ⋅ r ) .
2(c ⋅ r ) .
ρ ρ
a ⋅c .
2.48. 0.
ρ ρ
4(c ⋅ r ) .
2.49. 0.
2.50. 0.
129
ρ
ρ
2.51. div E = 0 , êðîìå òî÷êè (0, 0, 0), ãäå ïîëå E íå
îïðåäåëåíî.
ρ
ρ
2.52. div B = 0 , êðîìå òî÷êè (0, 0, 0), ãäå ïîëå B íå îïðåäåëåíî.
2.53. Äà.
2.56. (α + 3)rα ; α = -3.
2.54. Íåò.
2.57. 3 f + rf ′ ; f = C/r3.
2.83.
2.84.
2.85.
2.86.
2.87.
2.88.
2.89.
2.58. 2 f + ρf ′ ; f = C/ρ2.
2.59. — .
f (r) = C/r. Ïîäñêàçêà. Ñì. çàäà÷è 1.74 è 2.59.
Òåîðåìó Îñòðîãðàäñêîãî çäåñü ïðèìåíÿòü íåëüçÿ, òàê
ρ
êàê â òî÷êå (0, 0, 0) ïîëå a è åãî ïðîèçâîäíûå íå
îïðåäåëåíû.
0.
2.72. πR2h.
5
4πR .
2.73. a) 0; á) 0.
0.
2.74. 2πR2h.
3
2πhR .
2.75. (2/3)πR3.
(32/3)π.
2.76. -πh4/2.
5
(12/5) πR .
2.77. 0.
3l 5 .
2.78. π .
0.
2.79. π .
(256/3)π.
2.80. — .
8π.
2.81. q/ε0.
2.82. π .
(α + β + γ)/2. Ïîäñêàçêà. Ñì. ïîäñêàçêó ê çàäà÷å 2.37.
—.
1.
-πab.
a) 1/6; á) 0; â) 7/30; ã) 1/3.
a) -14/15; á) 2/3.
a) 2πωR2; á) πωR2/2; â) ωR2; ã) 0.
2.90.
2.91.
2.92.
2.93.
2.98.
(r22 − r12 ) / 2 = 16 .
(1 + c2)/2.
ln(r2/r1).
—.
2πk.
2.55. Äà.
2.60.
2.61.
2.62.
2.63.
2.64.
2.65.
2.66.
2.67.
2.68.
2.69.
2.70.
2.71.
2.94. 2πR2.
2.95. -πR2.
2.96. -14/15.
2.97. -4R2/3.
2.105. 0.
2.106. − 2πR2 .
2.99. 3πab(a2 + b2)/4.
130
π
2.107. -πR2.
2.108. 0.
2.109. -π .
2.110. 2 {0, 0, x + y}.
2.111. 0.
2.112. {0, 0, 2ω}.
ρ
ρ
ρ
2.113. v = {vm z h ,0,0} , rot v = {0, vm h ,0} , div v = 0 .
ρ
ρ
ρ
2.114. v = {vm(1 − y 2 a 2 ),0,0} , rot v = {0,0,2 vm y a 2} , div v = 0 .
2.100.
2.101.
2.102.
2.103.
2.104.
-3πR2/16.
—.
4/3.
128/3.
4/3.
2.115. 0.
2.127. -{2, 2, 2}.
2.136. - π .
2.137. -6πR2.
2.133. πR2.
2.134. -πR2.
2.138. − 2πR2 .
2.139. 2R3/3.
2.135. − 3πR2 .
2.140. -4R3/3.
2.141. 4/3. Ïîäñêàçêà. Ïîñêîëüêó ïîâåðõíîñòü S ïðîèçâîëüíà, òî åå óäîáíî âûáðàòü ñîñòîÿùåé èç òðåõ ïëîñêèõ
òðåóãîëüíûõ ôðàãìåíòîâ, ëåæàùèõ íà êîîðäèíàòíûõ
ïëîñêîñòÿõ.
2.142. -27/2.Ïîäñêàçêà. Ñì. ïîäñêàçêó ê çàäà÷å 2.141.
2.143. 0. Ïîäñêàçêà. Ñì. ïîäñêàçêó ê çàäà÷å 2.141.
2.144. -π/2. Ïîäñêàçêà. Ñì. ïîäñêàçêó ê çàäà÷å 2.141.
2.145. h3/3. Ïîäñêàçêà. Çàìêíóòü âèíòîâóþ ëèíèþ ïðÿìîé è
ïðèìåíèòü òåîðåìó Ñòîêñà.
2.146. — .
2.149. -1.
2.147. 3π/2.
2.150. 4/15.
2.148. 2/3.
2.151. 0.
2.152. 3π/2.
2.153. π/2. Ïîäñêàçêà. Çàìêíóòü ïîëóîêðóæíîñòü îòðåçêîì
îñè x.
2.154. π/2 + 1 — e2. Ïîäñêàçêà. Ñì. ïîäñêàçêó ê çàäà÷å 2.153.
2.155. Ïîäñêàçêà. Âî âòîðîì ñëó÷àå âû÷èñëèòü öèðêóëÿöèþ
ρ
ïîëÿ a ïî îêðóæíîñòè Ñ1, öåëèêîì ëåæàùåé âíóòðè
êîíòóðà Ñ (öåíòð îêðóæíîñòè — â íà÷àëå êîîðäèíàò);
ïîñëå ýòîãî ïðèìåíèòü ôîðìóëó Ãðèíà ê îáëàñòè,
îãðàíè÷åííîé êðèâûìè Ñ è Ñ1.
131
3. Òèïû âåêòîðíûõ ïîëåé
3.1.
3.2.
3.3.
3.4.
Íåò.
ϕ = -(x2y + y2z + z2x).
Íåò.
ϕ = -x2yz.
3.10. ϕ = -lnx + y + z.
3.11. ϕ = -xyz (x + y + z).
3.5.
3.6.
3.7.
3.8.
3.9.
ϕ = -(xyz + x).
Íåò.
ϕ = -xy.
ϕ = -(xy + ez — 1).
ϕ = -(xy + xz + yz).
ρ
3.12. Ïîäñêàçêà. Ïîêàçàòü, ÷òî rot a = 0 , à çàòåì âû÷èñëèòü öèðêóëÿöèþ ïî êîíòóðó, îõâàòûâàþùåìó îñü
z , êàê â ïðèìåðå 2 ðàçä. 3.1.
3.13. — .
3.14. Ýòî ñëåäóåò èç òîãî, ÷òî ∇(ϕ1 + ϕ 2 ) = ∇ϕ1 + ∇ϕ2 .
3.15. — .
3.16. ϕ = -kx2/2 ïðè x ≤ d, ϕ = k(d2/2 — xd) ïðè x > d,
ϕ = k (d2/2 + xd) ïðè x < -d.
ρ
3.17. — .
3.21. A = {0, x 2 2 , y 2 2 − xz} .
ρ
3.18. Äà.
3.22. A = {0, x 2 , y 2 − xz} .
ρ
3.19. — .
3.23. A = {0, e x − xe y ,0} .
ρ
ρ
3.20. A = {0, x, y − x} .
3.24. A = {0,− x( xz + 2 yz ),− xy 2} .
3.25. ψ = ωxy + C .
ρ ρ
3.26. Ïîëå a = r íå ÿâëÿåòñÿ ñîëåíîèäàëüíûì è ïîýòîìó
íå èìååò âåêòîðíîãî ïîòåíöèàëà.
ρ
µi
3.27. A = − 2π0 {0,0, ln ρ} .
ρ
γ 
3.28. A1 = πε 0,0,− arctg
2 0
x  Aρ =  yz , − xz ,0
y  , 2  ρ 2 ρ 2  .
п ри x ≤ d ;
− µ0 jx 2 / 2
ρ

3.29. A = {0,0, Az} , ãäå Az = µ0 jd 2 / 2 − µ0 jxd при x > d;
µ jd 2 / 2 + µ jxd при x < −d .
0
 0
132
3.30. Ïðè x ≤ d âåêòîðíûé ïîòåíöèàë íå ñóùåñòâóåò, òàê
ρ
ρ
êàê â ýòîé îáëàñòè div E ≠ 0 . Ïðè x > d A = kd{0,0, y} .
ρ
Ïðè x < -d A = − kd{0,0, y} .
ρ
1
1 ρ ρ
{z − y, x − z, y − x} = (a × r ) .
2
2
ρ
1 2
1 ρ ρ
{z − xy, x 2 − yz, y 2 − xz} = (a × r ) .
3
3
3.31. A =
3.32. A =
ρ
3.33. A = {−8 yz, xz,7 xy} .
ρ  sin( xz )
sin( xz ) 
, 0, −
.
3.34. A = 
x
2 

3.35. — .
ρ
3.36. A =
1 ρ ρ ρ 1 ρρ ρ ρ2
( p × r ) × r = (r ( p ⋅ r ) − pr ) .
3
3
3.37. f = r 3 3 . Ïîäñêàçêà. Ñì. çàäà÷ó 2.124.
3.38. f = r 2 2 .
3.39. f = r .
3.40. f = −1 r .
3.41. f = ∫ ru(r )dr . Ïîäñêàçêà. Ñì. çàäà÷ó 2.124 èëè ïðèìåð 2
3.42.
3.43.
3.44.
3.45.
ðàçä. 2.6.
f = u(r).
Äà.
Íåò.
Íåò.
3.52.
∆u = u′′ + u′ ρ ; u = C1 ln ρ + C2 .
3.53.
∆u = u′′ + 2 u′ r ; u = C1 r + C2 .
3.46. Äà.
3.47. — .
3.48. a) 1/r ; á) 2/r.
3.49. 6.
3.50. ∆r n = n (n + 1)rn—2.
3.51. u(r) = C/r3, ãäå Ñ — ëþáîå ÷èñëî. Ïîäñêàçêà. Ñì. çàäà÷ó 2.57.
3.54. — .
133
3.55.
3.56.
3.57.
3.58.
3.59.
3.60.
3.61.
3.62.
Ïîäñêàçêà. Ïðèìåíèòü òåîðåìó Îñòðîãðàäñêîãî.
Ïîäñêàçêà. Ïðèìåíèòü òåîðåìó Îñòðîãðàäñêîãî.
Ïîäñêàçêà. Ñì. çàäà÷è 3.56 è 3.49.
Ïîäñêàçêà.  ïåðâîì ñëó÷àå ïðèìåíèòü òåîðåìó Îñòðîãðàäñêîãî, äîêàçûâàþùóþ ñîîòíîøåíèå (3.16); âî
âòîðîì ñëó÷àå ââåñòè ñôåðó x2 + y2 + z2 = R2, öåëèêîì
ëåæàùóþ âíóòðè S, âû÷èñëèòü ïîòîê ÷åðåç íåå íåïîñðåäñòâåííî, à çàòåì ïðèìåíèòü òåîðåìó Îñòðîãðàäñêîãî ê îáëàñòè, çàêëþ÷åííîé ìåæäó ýòîé ñôåðîé è ïîâåðõíîñòüþ S.
Ïîäñêàçêà. Ïðèìåíèòü òåîðåìó Îñòðîãðàäñêîãî.
ρ
Ïîäñêàçêà. Âûïîëíèòü îïåðàöèþ rotrot a ñèìâîëè÷åñêèì ìåòîäîì.
0.
Ïîäñêàçêà. Äîêàçàòåëüñòâî ìîæíî âûïîëíèòü ïîêîîðäèíàòíî, íî ëó÷øå âîñïîëüçîâàòüñÿ ôîðìóëîé (3.17).
4. Êðèâîëèíåéíûå îðòîãîíàëüíûå êîîðäèíàòû
ρ ρ
ρ
ρ
4.1. B = eϕ ρ .
4.4. a = f ( ρ )ρeρ .
ρ
ρ
ρ
ρ
ρ
4.2. a = f ( ρ )ρeϕ .
4.5. a = f1( ρ, z )eρ + f2 ( ρ, z )ez .
ρ ρ
4.3. E = eρ ρ .
4.6. ϕ = C1 , r = C2 sin 2 θ .
4.7. ρ = C1 , z = bϕ + C2 (âèíòîâûå ëèíèè).
4.8. ϕ = C1 , r = C2 sin 2 θ .
ρ
, ,0} — â íàïðàâëåíèè îðòà eθ .
4.9. ∇u = {01
4.10. ∇u = {2r cos θ ,−r sin θ ,0} .
ρ z sin ϕ ρ
ρ  z sin ϕ

4.11. ∇u = eρ − ρ eϕ + cos ϕ ⋅ ez = 1,− ρ , cos ϕ  .


ρ
cos θ
4.12. div a = 2
.
r
4.14. 0; 0.
ρ
sin θ ρ
4.13. rot a = − 2 eϕ .
r
ρ
ρ sin ϕ ρ
e .
4.15. rot a = −2ρeϕ +
ρ z
134
ρ
ρ
4.16. rot a = ( ρ 2 + z 2 )eϕ .
ρ
ρ
z cos ϕ

4.17. div a = 0 ; rot a = 
,0, cos ϕ  .
 ρ

ρ
ρ
ρ
4.18. div eρ = 1 ρ , div eϕ = 0 , div ez = 0 ;
ρ
ρ ρ
ρ
rot eρ = 0 , rot eϕ = ez ρ , rot ez = 0 .
ρ
ρ
ρ 2
1
4.19. div er = , div eθ = r tg θ , div eϕ = 0 ;
r
ρ
ρ
ρ
eθ
er
ρ
ρ eϕ rot eρ
−
rot er = 0 , rot eθ = ,
ϕ =
r tg θ r .
r
4.20. 0.
4.21. f = C r 2 .
4.22. f = C ρ .
4.23. aϕ = aϕ ( ρ, z ) — ëþáàÿ ôóíêöèÿ, íå çàâèñÿùàÿ îò ϕ.
4.24. f = − z 2 + f1( ρ ) , ãäå f1(ρ) — ïðîèçâîëüíàÿ ñêàëÿðíàÿ
ôóíêöèÿ.
3
4.25. f = − ρz 2 + f1( ρ ) , ãäå f1(ρ) — ïðîèçâîëüíàÿ ñêàëÿð2
íàÿ ôóíêöèÿ.
4.26. 2πR2h.
4.27. πR2h/4.
4.28. 2πR3.
4.29. Ïîäñêàçêà. Âîñïîëüçîâàòüñÿ òåîðåìîé Îñòðîãðàäñêîãî è ñëåäñòâèåì 2 ðàçä. 2.4.
4.30. 2πR4.
4.31. 2π/R.
4.32. 0.
4.33. 8πR3/3.
4.34. πR4/2 — R5/3.
ρ
4.35. 2πh/3. Ïîäñêàçêà. Òàê êàê ïîëå a ñîëåíîèäàëüíî
ρ
( div a = 0 ), òî â ñèëó ñëåäñòâèÿ 3 òåîðåìû Îñòðîãðàäñêîãî (ðàçä. 2.4), ïëîñêóþ ïëîùàäêó S, îãðàíè÷åííóþ ïðÿìîóãîëüíûì êîíòóðîì, ìîæíî çàìåíèòü
íà ó÷àñòîê öèëèíäðè÷åñêîé ïîâåðõíîñòè ðàäèóñà R,
135
4.36.
4.37.
4.38.
4.39.
4.40.
4.41.
4.42.
4.43.
4.44.
4.45.
îïèðàþùåéñÿ íà äâå ñòîðîíû òîãî æå êîíòóðà è äîïîëíåííîé äâóìÿ òîðöåâûìè ñåãìåíòàìè êðóãà.
h ln( R2 R1) .
4.46. u = −( ρ 2 + ρ sin ϕ + z 2 ) .
4πR2.
4.47. Ïîëå íå ïîòåíöèàëüíî.
2πR.
4.48. u = z 3 3 − zρ 2 2 .
π2R.
4.49. Ïîëå íå ïîòåíöèàëüíî.
1/2.
4.50. u = eρ sin ϕ + z 2 .
2πR2.
4.51. Ïîëå íå ïîòåíöèàëüíî.
π.
4.52. u = − ∫ f (r )dr .
2/R2.
4.53. u = −rθ .
4.54. u = r 2 cos θ .
u = − ρ2 + 4 .
4.55. u = r sin θ ⋅ cos ϕ .
u = − ∫ f ( ρ )dρ .
4.56. u = cos θ r 2 .
при ≤ R;
− kρ 2 / 2
4.57. u( ρ ) = 
2
2
− ( kR / 2 + kR ln( ρ R)) при ≥ R.
( k 2 R)(3 − r 2 R2 ) при ≤ R;
k
u0 = u(0) = 3 .
4.58. u(r ) = 
2R
при
≥
R
.
k
r

4.59. f ( ρ, z ) = ρ 3 3 + f1( z ) , ãäå f1(z) — ïðîèçâîëüíàÿ ôóíêöèÿ.
4.60. f ( ρ, z ) = ρ 2 2 + f1( z ) , ãäå f1(z) — ïðîèçâîëüíàÿ ôóíêöèÿ.
4.61. Âåêòîðíûå ïîòåíöèàëû ìîãóò áûòü, íàïðèìåð, òàρ
ρ
êèìè: A = {0,0, ϕ} , A = {0,− z ρ ,0} ; îäíàêî ïåðâûé èç
íèõ «íåõîðîø» òåì, ÷òî èìååò ðàçðûâ ïðè ïåðåõîäå
÷åðåç ïîëóïëîñêîñòü ϕ = 0.
4.62. Ñðåäè âåêòîðíûõ ïîòåíöèàëîâ âîçìîæíû òàêèå:
ρ
ρ
A = {z ρ,0,0} , A = {0,0,− ln ρ} .
4.63. Âîçìîæíû, íàïðèìåð, òàêèå âàðèàíòû âåêòîðíûõ ïîρ
ρ
òåíöèàëîâ: A = {ρz,0,0} , A = {0,0,− ρ 2 2} .
ρ
4.64. A = {0,− ρz 2 2 ,0} .
ρ
4.65. A = {0,− ρ 2 z 2 2 ,0} .
ρ
4.66. A = {0,0,(sin θ ) r 2} .
ρ ρ
4.67. Ïîëå a = rer íå ÿâëÿåòñÿ ñîëåíîèäàëüíûì, è ïîýòîìó íå èìååò âåêòîðíîãî ïîòåíöèàëà.
136
4.68.
4.69.
4.70.
4.71.
Íåò.
Äà.
Äà.
Íåò.
4.72.
4.73.
4.74.
4.75.
4.76.
Äà.
Íåò.
Íåò.
Íåò.
n (n + 1)r n—2.
á) u = C1 ln tg(θ 2) + C2 ;
4.77. a) u = C1 r + C2 ;
â) u = C1ϕ + C2 .
4.78. u = Cr 2 6 + C1 r + C2 , ãäå Ñ1 è Ñ2 — ïîñòîÿííûå.
4.79. a) åñëè n ≠ −2 è n ≠ −3 , òî u =
C
r n +2
+ 1 + C2 ;
( n + 2)( n + 3) r
á) åñëè n = −2 , òî u = ln r + C1 r + C2 ;
ln r C1
â) åñëè n = −3 , òî u = −
+ + C2 .
r
r
4.80. a) åñëè n ≠ −1 è n ≠ −2 , òî u =
z n +2
+ C1z + C2 ,
( n + 1)( n + 2)
ãäå Ñ1 è Ñ2 — ïîñòîÿííûå;
á) åñëè n = −1 , òî u = z ln z + C1z + C2 ;
â) åñëè n = −2 , òî u = − ln z + C1z + C2 .
4.81. u = C ρ , ãäå Ñ — ïîñòîÿííàÿ.
4.82. u = C r 2 , ãäå Ñ — ïîñòîÿííàÿ.
4.83. f ( ρ, z ) = ρ 2 2 − z 2 + C , ãäå Ñ — ïîñòîÿííàÿ.
4.84. Íè ïðè êàêîé.
4.85. T =
R1T1( R2 − r ) + R2T2(r − R1 )
.
r( R2 − R1 )
5. Òåíçîðû
 – cos α sinα  −1
; Г = Г' , ãäå Г ′ — òðàíñïîíè − sinα cosα
5.1. Г = 
ðîâàííàÿ ìàòðèöà Ã.
137
5.2. Ïóñòü [aij] è [bij] — äâå îðòîãîíàëüíûå ìàòðèöû.
Ýòî îçíà÷àåò, ÷òî
∑ aik a jk
k
= δ ij ,
∑ bik b jk
k
= δ ij .
Ïî ïðàâèëó óìíîæåíèÿ «ñòðîêà íà ñòîëáåö»
cij = ∑ a ik bkj . Ñîñòàâèì è ïðåîáðàçóåì ñóììó:
k
∑ cik c jk = ∑ (∑ aimbmk ∑ a jnbnk ) = ∑ ∑ aima jn ∑bmkbnk =
k
k
m
n
m n
k
= ∑ ∑ aima jnδ mn = ∑ aima jm = δ ij .
m n
m
Òàêèì îáðàçîì, ìàòðèöà [cij] óäîâëåòâîðÿåò îïðåäåëåíèþ îðòîãîíàëüíîñòè.
5.3. Ñòðîêè ìàòðèöû Ã ñîñòàâëåíû èç êîìïîíåíò íîâûõ
ρ ρ ρ
áàçèñíûõ âåêòîðîâ ( e1′ , e2′ , e3′ ) â ñòàðîì áàçèñå
ρ ρ ρ
( e1 , e2 , e3 ) , ñëåäîâàòåëüíî, det à ìîæåò áûòü ïðåä-
ñòàâëåí ñìåøàííûì ïðîèçâåäåíèåì áàçèñíûõ âåêòî-
ρ ρ ρ
ðîâ ( e1′ , e2′ , e3′ ) , êîòîðîå ðàâíî îáúåìó êóáà, ïîñòðîρρ ρ
åííîãî íà ýòèõ âåêòîðàõ, ò. å. V = ( e1′e2′ e3′ ) = ±1. Çíàê
«+» áåðåòñÿ, åñëè îáà áàçèñà ïðàâûå èëè ëåâûå, à
çíàê «-», åñëè îäèí áàçèñ ïðàâûé, à äðóãîé ëåâûé.
5.4. Óðàâíåíèå ïëîñêîñòè:
∑ a i xi
= 1. Ïðè ïîâîðîòå áà-
i
çèñà ñòàðûå êîîðäèíàòû êàæäîé òî÷êè ïëîñêîñòè âûðàæàþòñÿ ÷åðåç íîâûå ôîðìóëîé: xi = ∑ γ ik
′ xk′ . Ñëåk
äîâàòåëüíî,
∑ ∑ a i γ ik′ xk′ = ∑ (∑ γ ki a i )xk′
i
k
k
âíóòðåííèå ñóììû a k′ =
= 1. Çäåñü
i
∑ γ ki a i
îáðàçóþò êîýôôè-
i
öèåíòû ïëîñêîñòè â íîâîì áàçèñå. Âèäíî, ÷òî òàêîå
ïðåîáðàçîâàíèå êîýôôèöèåíòîâ a 1 , a 2 , a 3 ñîîòâåòñòâóåò îïðåäåëåíèþ òåíçîðà 1-ãî ðàíãà.
138
5.5. Äîêàçàòåëüñòâî òàêîå æå, êàê â çàäà÷å 5.4.
5.6. Ïðè ïåðåõîäå ê íîâîìó áàçèñó êîìïîíåíòû âåêòîðîâ
ïðåîáðàçóþòñÿ ïî çàêîíó:
xi′ = ∑ γ ik xk ,x′j = ∑ γ jl xl .
Ñëåäîâàòåëüíî, â íîâîì áàçèñå:
aij′ = xi′x′j = ∑∑ γ ikγ jl xk xl = ∑∑ γ ikγ jl akl .
Ýòî ïðåîáðàçîâàíèå ÷èñåë a kλ ñîîòâåòñòâóåò îïðåäåëåíèþ òåíçîðà 2-ãî ðàíãà.
5.7. Äîêàçàòåëüñòâî òàêîå æå, êàê â çàäà÷å 5.6.
5.8. Äîêàçàòåëüñòâî òàêîå æå, êàê â çàäà÷å 5.6.
5.9. Ïîñêîëüêó [δ ij ] — òåíçîð, òî
δ ij′ = ∑∑ γ ikγ jl δ kl = ∑ γ ikγ jk = δ ij
k
(òàê êàê ìàòðèöà [γ ij ] îðòîãîíàëüíà).
5.10. Äîêàçàòåëüñòâî òàêîå æå, êàê â çàäà÷å 5.9.
5.11. Â íîâîì áàçèñå
ρ ρ
x′ ⋅ y′ = ∑ xi′yi′ = ∑ ( ∑ γ ik xk )(∑ γ il yl ) == ∑∑ xk yl ∑ γ ikγ il =
i
k
l
k
ρ ρ
= ∑∑ xk ylδ kl = ∑ xk yk = x ⋅ y.
k
l
l
i
k
5.12. Î÷åâèäíî, ÷òî ìîæíî çàïèñàòü:
a ij =
1
1
( a ij + a ji ) + ( a ij − a ji ) = bij + cij .
2
2
Íî òåíçîð TS = [ bij ] =
1
[ a ij + a ji ] ÿâëÿåòñÿ ñèììåò2
êàê
bij = b ji ,
ðè÷íûì,
òàê
TAS = [ cij ] =
1
[ a ij − a ji ] ÿâëÿåòñÿ àíòèñèììåòðè÷2
íûì, òàê êàê cij = − c ji .
139
à
òåíçîð
5.13.  ñîîòâåòñòâèè ñ ðåøåíèåì çàäà÷è 5.12, ïîëó÷àåì:
 0 − 1 − 2
1 3 5 


[ bij ] = 3 5 7 ,
[ cij ] =  1 0 − 1.




0 
 2 1
5 7 9
ρ ρ ρ
5.14. Ïóñòü â áàçèñå ( e1 , e2 , e3 ) a ij = a ji . Òîãäà
aij′ = ∑∑ γ ikγ jl akl = ∑∑ γ ikγ jl alk = ∑∑ γ jlγ ik alk = a′ji .
k
l
k
l
l
k
5.15. Òàê êàê a ij = a ji , à bij = −b ji , òî íàáîð ÷èñåë
cij = a ij bij îáðàçóåò àíòèñèììåòðè÷íûé òåíçîð 2-ãî
ðàíãà. Ñëåäîâàòåëüíî, ñóììà âñåõ åãî êîìïîíåíò
S = ∑ ∑ cij = 0.
i
j
5.16. Â íîâîì áàçèñå a′kl = ∑∑ γ kiγ lj aij , ãäå [γ ij ] — ìàòðèöà
ρ
ρ
ïðåîáðàçîâàíèÿ áàçèñà: ei′ = ∑ γ ij e j . Ðàñêëàäûâàÿ
ρ
ρ
ρ ρ
îðòû e1′ è e2′ ïî ñòàðîìó áàçèñó ( e1 , e2 ) , ïîëó÷àåì:
ρ ρ
ρ
 e1′ = e1 ⋅ cos α + e 2 ⋅ sin α ,
ãäå α — óãîë ïîâîðîòà
ρ
ρ
ρ
e 2′ = − e1 ⋅ sin α + e 2 ⋅ cos α ,
áàçèñà (ñì. çàäà÷ó 5.1). Ïðè α = 45° èìååì:
[γ ij ] =
1
2
 1 1
− 1 1. Îäíàêî âìåñòî äâîéíîãî ñóììè

ðîâàíèÿ òåõíè÷åñêè óäîáíåå âûïîëíèòü îïåðàöèþ ïåðåìíîæåíèÿ
ìàòðèö:
T ′ = ГТГ −1 ,
ãäå
T = [ a ij ], T ′ = [ a ij′ ]. Äëÿ ýòîãî íàäî âû÷èñëèòü ìàòðèöó îáðàòíîãî ïðåîáðàçîâàíèÿ Г
−1
. Íî òàê êàê áà-
çèñ ÿâëÿåòñÿ îðòîíîðìèðîâàííûì, òî Г −1 = Г ′, ãäå
Г ′ — òðàíñïîíèðîâàííàÿ ìàòðèöà Ã, ò. å.
140
Г −1 =
Òîãäà T ′ =
1
2
1 − 1
1 1 .


1  1 1  6 2 1 − 1 1  13 − 3
=
.
2 − 1 1  2 3 1 1  2  − 3 5 
Âèäíî, ÷òî â íîâîì áàçèñå ìàòðèöà òåíçîðà òàêæå
ïîëó÷èëàñü ñèììåòðè÷íîé, êàê è äîëæíî áûòü â ñèëó
èíâàðèàíòíîñòè ñâîéñòâà ñèììåòðèè.
5.17. T ′ = ГТГ
−1
 0 1  0 2  0 − 1  3 − 2
=


=
.
− 1 0  2 3 1 0  − 2 0 
Ðåøåíèå òàêîå æå, êàê â çàäà÷å 5.16.
5.18.
 7 0 ρ
1  2 1
1
1
ρ
T′ = 
{2,1}, e2′ = {− 1,2}; Г = − 1 2.
; e1′ =
0
2
5
5
5



5.19.
4 0  ρ
1
1
1  1 2
ρ
− 2,1}; Г =
T′ = 
1,2}, e 2′ =
; e1′ =
{
{

.

5
5
5  − 2 1
0 − 1
5.20.
3 0 0 
1
1
1
ρ
ρ
ρ
T ′ =  0 6 0 ; e1′ =
{1,−1,1}, e2′ = {1,2,1}, e3′ = {1,0,−1}.


3
6
2
 0 0 − 2
Ìàòðèöà Т ′ ñîñòîèò èç ñîáñòâåííûõ çíà÷åíèé òåíçîðà Ò, ðàñïîëîæåííûõ íà åå ãëàâíîé äèàãîíàëè. Ëåãêî
ïðîâåðèòü, ÷òî Т ′ = ГТГ −1 .
5.21.
0 0 0 
1
1
ρ
ρ
ρ
T ′ = 0 10 0; e1′ =
{2,−1,0}, e2′ = {1,2,0}, e3′ = {0,0,1}.


5
5
0 0 1
Ñòðîêàìè ìàòðèöû Ã ÿâëÿþòñÿ êîìïîíåíòû âåêòî-
ρ ρ ρ
ðîâ e1′ , e2′ , e3′ .
141
1 0 0 
1
ρ
ρ
ρ
5.22. T ′ =  0 1 0 ; e3′ =
{− 1,0,1}. Îðòû e1′ è e2′


2
 0 0 − 1
ìîãóò áûòü ëþáûìè â ïëîñêîñòè, ïåðïåíäèêóëÿðíîé
ρ ρ ρ
ρ
îðòó e3′ , íî òàêèìè, ÷òîáû òðîéêà ( e1′ , e2′ , e3′ ) îáðàçîâûâàëà ïðàâûé îðòîíîðìèðîâàííûé áàçèñ; íàïðè-
ρ
1
ρ
{1,0,1}, e2′ = {0,1,0}. Ñòðîêàìè ìàòðè2
ρ ρ ρ
öû Ã ÿâëÿþòñÿ êîìïîíåíòû âåêòîðîâ e1′, e2′ , e 3′ . Ëåãìåð e1′ =
êî óáåäèòüñÿ, ÷òî Т ′ = ГТГ −1 .
ρ
ρ
ρ
5.23. Ïîñêîëüêó v = ω × r , òî ìîæíî óòâåðæäàòü, ÷òî êîìρ ρ
ïîíåíòû âåêòîðîâ v è r ñâÿçàíû ëèíåéíûìè ñîîò-
 0
ρ
ρ

íîøåíèÿìè: v = Ω r , ãäå Ω = ω 3

− ω 2
− ω3
0
ω1
ω2 
− ω1 ,

0 
à çíà÷èò, êîýôôèöèåíòû ëèíåéíîãî îïåðàòîðà Ω îïðåäåëÿþò òåíçîð 2-ãî ðàíãà.
5.24. I =
1 0 0 
ml 2 
0 1 0 .
12 
0 0 0 
 1 0 0
mR2 
5.25. I =
0 1 0 ;


4
 0 0 2
a 2
m
5.26. I = 12  0
0

0
b
2
0
mR2 2
( x1 + x22 + 2 x32 ) = 1.
4


0
;
2
2 
( a + b )
0
142
m 2 2
( a x1 + b 2 x22 + ( a 2 + b 2 ) x32 ) = 1.
12
 ( R2 + h 2 / 3)
0
0 

m
2
2
0
0 .
( R + h / 3)
5.27. I = 
4
0
0
2 R2 

 7 0 0
mR2 
5.28. I =
0 7 0;


5
 0 0 2
mR2
( 7 x12 + 7 x22 + 2 x32 ) = 1.
5
 0
ρ ρ  
ρ
5.29. j = ΛE; E = 0 , ñëåäîâàòåëüíî,
 
1
 0 
 0 
ρ  
 A 
6 A 
j = − 2 ⋅ 10  2  = − 2
;


 
 мм 2 
м 
 5 
 5 
α ≈ 22 0 ; λ1 = 3, λ 2 = 6, λ 3 = 9;
ρ 1
ρ 1
ρ 1
e1′ = {1,2 ,2}, e2′ = {2 ,1,−2}, e3′ = {− 2 ,2 ,−1}.
3
3
3
 0
ρ
ρ
∃ 0 E = ε 0  2; α ≈ 34 0 ; ε 1 = 1, ε 2 = 4 , ε 3 = 7;
5.30. D = εε
 
 3
143
ρ 1
ρ 1
ρ 1
e1′ = {1,2,−2}, e 2′ = {2,1,2}, e3′ = {− 2,2,1}.
3
3
3
5.31. 15.
5.32.
∂a
ρ
∑ (∇a ) ii = ∑ ∂xi
i
i
ρ
ρ
= ∇ ⋅ a = div a .
i
5.33. — .
5.34. Ñâåðòêîé áóäåò âåêòîð [ ci ] , êîìïîíåíòû êîòîðîãî
8
ci = ∑ a ij b j . Ïîäñòàâëÿÿ ÷èñëà, ïîëó÷àåì: [ c ] = 17 .
i
 
j
 26
 − 1 0 0
ρ  ∂a i  

5.35. ∇a = 
 =  0 1 0 .
 ∂x j   0 0 0


ρ
∂ai
 ∂a 

5.36. ∂r  = ∑ l j ∂x ,
 i
j
j
ρ rρ
ãäå l = — åäèíè÷íûé ðàäèóñ-âåêòîð. Ïîäñòàâëÿÿ
r
ρ
ρ
êîìïîíåíòû âåêòîðîâ a è l , ïîëó÷àåì:
ρ
∂a
=
∂r
1
x12 + x22
{− x2 , x1 }.
ρ
∂r ρ
= l = –onst.
5.37.
∂l
144
ÑÏÈÑÎÊ ËÈÒÅÐÀÒÓÐÛ
1. Êî÷èí Í.Å. Âåêòîðíîå èñ÷èñëåíèå è íà÷àëà òåíçîðíîãî
èñ÷èñëåíèÿ. Ì.: Íàóêà, 1965. 428 ñ.
2. Áóäàê Á.Ì., Ôîìèí Ñ.Â. Êðàòíûå èíòåãðàëû è ðÿäû. Ì.:
Íàóêà, 1967. 608 ñ.
3. Äåìèäîâè÷ Á.Ï. Ñáîðíèê çàäà÷ è óïðàæíåíèé ïî ìàòåìàòè÷åñêîìó àíàëèçó. ÃÈÒÒË, 1954. 512 ñ.
4. Êðàñíîâ Ì.Ë., Êèñåëåâ À.È., Ìàêàðåíêî Ã.È. Âåêòîðíûé àíàëèç.
Ì.: Íàóêà, 1978. 160 ñ.
5. Ï÷åëèí Á.Ê. Âåêòîðíûé àíàëèç äëÿ èíæåíåðîâ-ýëåêòðèêîâ
è ðàäèñòîâ. Ì.: Ýíåðãèÿ, 1968. 256 ñ.
6. Êðó÷êîâè÷ Ã.È. è äð. Ñáîðíèê çàäà÷ è óïðàæíåíèé ïî ñïåöèàëüíûì ãëàâàì âûñøåé ìàòåìàòèêè. Ì.: Âûñøàÿ øêîëà, 1970.
512 ñ.
7. Î÷àí Þ.Ñ. Ñáîðíèê çàäà÷ ïî ìåòîäàì ìàòåìàòè÷åñêîé
ôèçèêè. Ì.: Âûñøàÿ øêîëà, 1973. 192 ñ.
8. Ìèñþðêååâ È.Â. Ñáîðíèê çàäà÷ è óïðàæíåíèé ïî ìåòîäàì
ìàòåìàòè÷åñêîé ôèçèêè. Ì.: Ïðîñâåùåíèå, 1975. 168 ñ.
145
Äëÿ çàìåòîê
Äëÿ çàìåòîê
Ó÷åáíîå èçäàíèå
Ìèõàéëîâ Âëàäèìèð Êîíñòàíòèíîâè÷
Ñèïëèâûé Áîðèñ Íèêîëàåâè÷
Àôàíàñüåâ Àíàòîëèé Ìèõàéëîâè÷
ÇÀÄÀ×È ÏÎ ÂÅÊÒÎÐÍÎÌÓ ÀÍÀËÈÇÓ
Ó÷åáíîå ïîñîáèå
Ãëàâíûé ðåäàêòîð À.Â. Øåñòàêîâà
Ðåäàêòîð Î.Ñ. Êàøóê
Òåõíè÷åñêèé ðåäàêòîð À.Å. Ñòåïàíîâ
Õóäîæíèê Í.Í. Çàõàðîâà
ËÐ ¹ 020406 îò 12.02.97
Ïîäïèñàíî â ïå÷àòü 12.05 2001 ã. Ôîðìàò 60x84/16.
Áóìàãà òèïîãðàôñêàÿ ¹ 1. Ãàðíèòóðà Òàéìñ. Óñë. ïå÷. ë. 8,4.
Ó÷.-èçä. ë. 9,0. Òèðàæ 200 ýêç. Çàêàç
. «Ñ» 41.
Èçäàòåëüñòâî Âîëãîãðàäñêîãî ãîñóäàðñòâåííîãî óíèâåðñèòåòà.
400062, Âîëãîãðàä, óë. 2-ÿ Ïðîäîëüíàÿ, 30.
Download