Задание 5 Химическая очистка ПСВ

advertisement
ДОМАШНЕЕ ЗАДАНИЕ №5
ХИМИЧЕСКАЯ ОЧИСТКА ПРОИЗВОДСТВЕННЫХ СТОЧНЫХ ВОД
1 НЕЙТРАЛИЗАЦИЯ ПРОИЗВОДСТВЕННЫХ СТОЧНЫХ ВОД
Производственные сточные воды многих отраслей промышленности содержат
кислоты и щелочи. Для предупреждения коррозии материалов канализационных
сооружений кислые и щелочные ПСВ подвергаются нейтрализации. Нейтрализация
нередко производится также в целях осаждения из сточных вод солей тяжелых
металлов.
Во всех случаях учитывают возможность взаимной нейтрализации кислот и
щелочей, сбрасываемых со сточными водами, а также щелочной резерв бытовых
сточных вод и нейтрализующую способность воды водоемов. Практически нейтральной принято считать ПСВ с величиной рН в пределах 6,5 – 8,5, поэтому сточные воды,
рН которых ниже 6,5 или выше 8,5, перед отведением в городскую канализацию или в
водоем подлежат нейтрализации.
Процесс нейтрализации осуществляется в нейтрализаторах проточного или
контактного типа, которые могут конструктивно объединяться с отстойниками. При
благоприятных местных условиях осветление нейтрализованной сточной воды может
производиться в накопителях, рассчитываемых на хранение в них осадка в течение 10
15 лет.
Объем выпадающего осадка зависит от концентрации в нейтрализуемой сточной
воде кислоты и ионов тяжелых металлов, а также от вида и дозы реагента. Наибольшее
количество осадка выпадает при нейтрализации сточной воды известковым молоком,
приготовленным из товарной извести, которая содержит 50% активного вещества
оксида кальция.
Взаимная нейтрализация кислых и щелочных ПСВ. Режимы сброса
сточных вод, содержащих кислоту и отработавшую щелочь, на заводах, как правило,
различны. Кислые воды обычно сбрасываются в канализацию равномерно в течение
суток
и
имеют
постоянную
концентрацию;
щелочные
воды
сбрасываются
периодически один или два раза за смену по мере того, как отрабатывается щелочной
раствор. В связи с этим для щелочных вод необходимо устраивать регулирующий
резервуар, объем которого должен быть достаточным, чтобы принять суточное
количество щелочных вод. Из резервуара щелочные воды должны равномерно
выпускаться в камеру смешения, где происходит их нейтрализация кислыми сточными
водами.
Нейтрализация стоков путем добавления реагентов. Если сточные
воды содержат больше кислоты или щелочи, чем может быть нейтрализовано при
взаимо-действии стоков, то добавляют соответствующие реагенты. Этим методом
наиболее часто пользуются для нейтрализации кислот. Обычно реагентом служат
отходы местного производства. Для обезвреживания сточных вод, содержащих серную
кислоту, и образующихся при травлении металлических изделий, используются отходы
металлургической промышленности: шлаки сталеплавильного, феррохромового и
доменного
производства.
Основными
компонентами
этих
шлаков
являются
соединения, содержащие соединения кальция – 30 – 59% (в пересчете на СаО), до 17%
оксида магния и до 39% соединений кремния (в пересчете на SiO2). Высокая
дисперсность шлаков позволяет использовать их в естественном состоянии, минуя
измельчение. Значительно меньшая стоимость шлаков по сравнению с известью
обусловливает экономическую целесообразность их использования.
Для нейтрализации минеральных кислот применяют любой щелочной реагент.
Чаще всего применяют растворы щелочей, карбонатов и гидрокарбонатов щелочных и
щелочноземельных металлов. Наиболее дешевыми реагентами являются Са(ОН)2 (в
виде пушонки или известкового молока), а также карбонаты кальция и магния (в виде
дробленого мела, известняка и доломита). Гидроксид натрия и соду применяют только
в тех случаях, когда эти реагенты являются отходами местного производства.
В качестве реагентов для нейтрализации карбоновых
кислот применяют известь,
содержащую не менее 25—30% активного оксида кальция, или смесь извести с 25%ной технической аммиачной водой (NH4OH). Добавление аммиака способствует
последующей биологической очистке этих вод.
Доза
реагента
для
обработки
ПСВ
определяется
из
условия
полной
нейтрализации содержащихся в них кислот или щелочей и принимается на 10% больше
расчетной. Удельный расход реагента – количество реагента, необходимого для
нейтрализации 1л (или 1м3) определяется по формуле:
Gуд = kз
100
(aС0 + b1C1 + b2C2 + + bnCn),
B
где kз – коэффициент запаса расхода реагента ( для суспензии Ca(OH)2 коэффициент
запаса принимается равным 1,1, для сухой негашеной извести – 1,5);
В – массовая доля активной части в товарном продукте, %;
а – стехиометрический расходный коэффициент реагента на нейтрализацию кислоты,
кг · кг-1;
b1,b2, bn– стехиометрические расходные коэффициенты реагента на осаждение ионов
тяжелых металлов, кг · кг-1;
С0 – массовая концентрация кислоты (или щелочи), г · л-1 (или кг · м-3);
C1,C2, Cn – массовые концентрации тяжелых металлов ПСВ, г · л-1 (или кг · м-3).
Расход реагента на весь объем нейтрализуемой ПСВ G = Gуд · Q,
Q – объем ПСВ, подлежащих нейтрализации, л (или м3)
Масса осадка, образующегося при нейтрализации 1л (или 1м3) ПСВ
определяется по формуле:
Gос уд =
100  B
(х0 + х1 + x2 + xn) + у1 + у2 + + уn + (z0 + z1 + z2 + + zn– 2)
B
x0 – масса СаО, небходимого для нейтрализации кислоты, содержащейся в 1л (или 1м3)
в ПСВ
х1, х2, xn – массы СаО, небходимого для осаждения тяжелых металлов, содержа-щихся
в 1л (или 1м3) ПСВ;
100  B
(х0 + х1 + x2 + xn) – масса нерастворимых примесей в СаО, выпада-ющих в
B
осадок при нейтрализаци1л (или 1м3) ПСВ;
у1, у2, уn – массы гидроксидов тяжелых металлов, образующихся при нейтра-лизации
1л (или 1м3) ПСВ,
z0 – масса СaSO4, образующегося при нейтрализации 1л (или 1м3) ПСВ,
z1, z2, zn – массы СaSO4, образующегося при осаждении тяжелых металлов из 1л (или
1м3) ПСВ,
2 – растворимость СaSO4, г · л-1 (или кг · м-3).
М асса осадка, образующегося при нейтрализации всего объема ПСВ, Gос равна
Gос = Gос уд · Q
Нейтрализация кислых сточных вод путем фильтрования через
нейтрализующие материалы. Нейтрализация соляно-, азотно- и сернокислых
сточных вод при содержании серной кислоты не более 1,5 г/л происходит на
непрерывно
действующих
фильтрах.
В
качестве
загрузки
применяют
такие
нейтрализующие материалы, как доломит, известняк, магнезит, мел, мрамор и др.
Крупность фракций материала загрузки 3 – 8 см; расчетная скорость фильтрования
зависит от вида загрузочного материала, но не более 5 м/ч; продолжительность
контакта не менее 10 мин. Высоту загрузки для сточных вод, содержащих HCI и HNO3
принимают равной 1 – 1,5 м, а содержащих H2SO4  равной 1,5 – 2 м. Применение
таких фильтров возможно при отсутствии в кислых сточных водах растворенных солей
металлов, поскольку при рН > 7 они будут осаждаться в виде гидроксидов, которые
полностью забивают поры фильтра. Применение нейтрализующих фильтров не
рекомендуется при подаче на них сточных вод с концентрацией серной кислоты более
1,5 г/л из-за образования осадка сульфата кальция.
Нейтрализация дымовыми газами. Применение для нейтрализации
щелочных сточных вод отходящих газов, содержащих CО2 , SО2 , NO2 и другие кислые
газы, позволяет не только нейтрализовать кислые сточные воды, но и одновременно
осуществлять высокоэффективную очистку самих газов от вредных компонентов.
Нейтрализация производится в колонной абсорбционной аппаратуре.
2 ОКИСЛЕНИЕ И ВОССТАНОВЛЕНИЕ КОМПОНЕТОВ
ПРОИЗВОДСТВЕННЫХ СТОЧНЫХ ВОД
2.1 ОКИСЛЕНИЕ ПРОИЗВОДСТВЕННЫХ СТОЧНЫХ ВОД АКТИВНЫМ
ХЛОРОМ
Обезвреживание сточных вод хлором или его соединениями – один из самых
распространенных способов их очистки от ядовитых цианидов, а также от таких
органических и неорганических соединений, как сероводород, гидросульфид, сульфид,
метилмеркаптан и др.
Окисление цианидов проводят в щелочной среде (рН ≥ 9 – 10):
CN- + 2OH- + Cl2 → CNO- + 2Cl- + 2H2O.
Образующиеся цианаты гидролизуются с образованием
ионов аммония и
карбонат-ионов:
CNO- + 2H2O → NH4+ + CO32-.
Более надежным и экономически целесообразным методом является окисление
цианидов гипохлоритами в щелочной среде (рН ≥ 10 – 11):
CN- + ОCl- → CNO- + Cl-.
В щелочной среде хлор окисляет сульфиды до сульфатов:
Na2S + 4Cl2 + 8NaOH → Na2SO4 + 8NaCl + 4H2O;
В кислой и нейтральной среде возможно образование сульфитов:
H2S + 3Cl2 + 3H2O → H2SO3 + 6HCl;
NaHS + 3Cl2 + 3H2O → NaHSO3 + 6HCl.
В зависимости от агрегатного состояния хлора или хлорсодержащих реагентов
определяется технология обработки ПСВ. Если воду обрабатывают газообразным
хлором, то процесс окисления осуществляется в абсорберах. Если хлор находится в
растворе, то его подают в смеситель и далее в контактный резервуар, в которых
обеспечивается его перемешивание с водой и необходимая продолжительность
контакта.
2.2 ОКИСЛЕНИЕ ПРОИЗВОДСТВЕННЫХ СТОЧНЫХ ВОД ОЗОНОМ
Озон обладает высокой окислительной способностью и при нормальной температуре разрушает многие органические вещества, находящиеся в воде. При этом
процессе возможно одновременное окисление примесей, обесцвечивание, дезодорация,
обеззараживание сточной воды и насыщение ее кислородом. Озонирование является
перспективным методом очистки производственных сточных вод, поскольку при его
использовании не происходит так называемого вторичного загрязнения воды.
Озон получают разными методами, но наиболее экономичным способом
является его получение непосредственно на очистных сооружениях методом тихого
разряда в воздухе. Тихий разряд образуется в узком газовом пространстве между двумя
электродами, к которым подведен ток напряжением 5  25 кВ. Производительность
генератора-озонатора и расход электроэнергии на получение озона в значительной
степени зависят от влажности поступающего в озонатор воздуха, его температуры,
концентрации кислорода, а также от конструкции озонатора и способа подачи озоновоздушной смеси в генератор. Поэтому для получения озона необходимо предварительно тщательно очищать и осушать воздух или кислород. Типовая технологическая
схема озонирования состоит из четырех основных блоков. Блок I  блок подготовки
воздуха, в состав которого входят компрессор для забора и сжатия воздуха, фильтры,
абсорберы, холодильники и ресиверы для очистки, осушки воздуха и стабилизации его
давления. Блок II  блок синтеза озона в газоразрядном генераторе с источником
электропитания и системой отвода выделяющейся теплоты. Блок III  блок смешения
озоно-воздушной смеси с обрабатываемой водой, состоящий из системы подачи и
отвода газовой и жидкой фаз и системы разложения неиспользованного озона. Блок IV
 блок автоматического управления и контроля за ведением процесса.
В обрабатываемую сточную воду озон вводят различными способами: барботированием озоно-воздушной смеси через слой воды; противоточной абсорбцией озона
в насадочных абсорберах; механическим перемешиванием воды с озоно-воздушной
смесью. Основными факторами, влияющими на эффективность очистки сточных вод
озонированием, являются: химическая природа окисляемых веществ, рН сточной воды,
время контакта озоно-воздушной смеси со сточной водой.
Озонирование является эффективным методом окислительной деструкции
фенола и его производных (хлор-, нитро-, амино- и, алкилфенолов), полифенолов,
сложных соединений фенольного характера (гидролизного лигнина, лигносульфоновых
кислот), СПАВ, цианидов, красителей и др.
При окислении цианидов протекают следующие реакции:
CN- + O3 → CNO- + O2;
CNO- + 2H+ + 2H2O → NH4+ + CO2;
2CNO- + 3O3 + H2O → N2 + 2HCO3- + 3О2.
При окислении сероводорода на первой стадии наблюдается окисление серы, а
на второй – окисление до серной кислоты:
H2S + O3 → S + O2 + H2O;
3H2S + 4О3 → 3H2SO4.
ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
Пример 1. Кислые сточные воды содержат 4,7 г·л-1 H2SO4 и 3,8 г·л-1 HCl.
Щелочные сточные воды содержат 3,3 г·л-1 NaOH и 2,9 г·л-1 Na2CO3.Рассчитайте
отношение объемов нейтрализуемых сточных вод.
Решение:
Согласно закону эквивалентов вещества вступают во взаимодействие в
эквивалентных количествах, т.е. число эквивалентов первого вещества, вступающего в
реакцию, равно числу эквивалентов второго вещества.
В рассматриваемом случае νэкв кмсл = νэкв
щел
Число эквивалентов каждого вещества можно вычислить через нормальную
(эквивалентную) концентрацию
νэкв кмсл = Сн кисл ·Vкисл; νэкв
щел
= Сн щел ·Vщел.
Откуда Сн кисл ·Vкисл = Сн щел ·Vщел. и
Vкисл / Vщел. = Сн щел / Сн кисл
Сн =
m р.в.
M(Э)р.в.  Vр-ра
где mр.в. – масса вещества, г;
M(Э) р.в. – молярная масса эквивалента вещества, г моль-1;
V р-ра – объем раствора, л.
Молярные массы эквивалентов серной кислоты, соляной кислоты, гидроксида
натрия и карбоната натрия (г моль-1) равны соответственно: 49; 36,5; 40 и 53. Заданные
массовые концентрации растворов равны массам веществ, содержащихся в 1 литре
раствора, поэтому V р-ра = 1л.
Сн (H2SO4) = 4,7 / (49 · 1) = 0,096 моль-экв·л-1;
Сн (HCl) = 3,8 / (36,5 · 1)= 0,104 моль-экв·л-1;
Сн кисл = 0,096 + 0,104 = 0,2 моль-экв·л-1.
Сн (NaOH) = 3,3 / (40 · 1) = 0,0825 моль-экв·л-1;
Сн (Na2СО3) = 2,9 / (53 · 1) = 0,0547 моль-экв·л-1;
Сн щел = 0,0825 + 0,0547 = 0,137 моль-экв·л-1.
Тогда Vкисл / Vщел. = Сн щел / Сн кисл = 0,137 / 0,2 = 1 : 1,46
Ответ: Для взаимной нейтрализации кислых и щелочных ПСВ надо смешать 1 л
кислых сточных вод с 1,46 л щелочных сточных вод.
Пример 2. Для удаления железа из воды используется его способность
осаждаться в виде гидроксид железа Fe(OH)3. ПР(Fe(OH)3) = 4∙10-38. Определите
концентрацию железа, остающегося в растворе при рН = 8 и рН = 10.
Решение:
При рН = 8 величина рОН = 14 – 8 = 6.
Отсюда [ОН–] = 10-рOН = 10-6 моль·л-1;
ПР(Fe(OH)3) диссоциирует по уравнению Fe(OH)3 ↔ Fe3+ + 3ОН-, поэтому
ПР(Fe(OH)3) = [Fe3+] [ОН–]3 = 4∙10-38.
[Fe3+] =
ПР
OH 
-
3
= 4∙10-38∙/ (10-6)3 = 4∙10-20 моль·л-1
При рН = 10 величина рОН = 14 – 10 = 4 и [ОН–] = 10-4
[Fe3+] =
ПР
OH 
-
3
= 4∙10-38∙/ (10-4)3 = 4∙10-26 моль·л-1.
Ответ: Растворимость Fe(OH)3 (содержание Fe3+ в растворе) при рН = 10 равна 4∙10-26
моль·л-1, при рН = 8 – 4∙10-20 моль·л-1, т.е. в 106 раз меньше.
Пример3 3.Вычислите рН насыщенного раствора Cr(OH)3 при 298К, если его
ПР(Cr(OH)3) = 6,7∙10-31.
Решение:
Cr(OH)3 диссоциирует по уравнению: Cr(OH)3 ↔ Cr3+ + 3ОН–.
Если концентрации частиц в насыщенном растворе выразить через растворимость, то [Cr3+] = S и [ОН–] = 3S.
Тогда ПР(Cr(OH)3) = [Cr3+] [ОН–]3 = S∙(3S)3 = 27S4.
S=
4
ПР(Cr(OH) 3 )
=
27
4
6,7 10  31
= 1,25∙10-8 моль·л-1.
27
[ОН–] = 3S = 3∙1,25∙10-8 = 3,75∙10-8 моль·л-1.
рОН = – lg С(OH-) = (3,75∙10-8) = 7,426 ≈ 7,43
рН = 14 – 7,43 = 6,57
Ответ: Осаждение начнется при рН > 6,57
Пример 4. В процессе производства телевизионных трубок образуются отходы
фторидов и свинца, т.к. для очистки и травления стеклянных колб (трубок)
используется HF, а для герметизации электронного блока – припой из свинцового
стекла, содержащий 70-80% (по массе) стекла. Отходы свинца и фторидов
обрабатываются отдельно. Предложите схему осаждения Pb2+ и F– и реагенты для их
удаления.
Решение:
1) PbCO3, Pb(OH)2, PbS особенно плохо растворимы при высоких значениях рН.
Отходы, содержащие Pb2+, имеют кислый характер, следовательно, они не могут быть
использованы для решения этой задачи, в противном случае пришлось бы изменить
величину рН.
2) Pb3(PO4)2 плохо растворим и в кислой среде. Для его осаждения можно
использовать Na3PO4.
3) CrF3 и CuF2 практически нерастворимы, но поскольку даже небольшие
количества Cr3+ и Cu2+ токсичны, возможность использования этих соединений в
качестве реагентов полностью исключается.
4) Наиболее приемлемым является CaF2. Са2+ может быть использован в виде
доступной и дешевой гашеной извести:
2HF + Ca(OH)2 = CaF2 + 2H2O
Реакция эффективна при высоких значениях рН.
5) В результате осаждения остаются кислые и щелочные сточные воды. Если их
смешать, то получим почти нейтральный раствор.
Na3PO4
Сточные воды,
содержащие Pb2+
Ca(OH)2
Реактор
смешения
Сточные воды,
содержащие F–
Реактор
смешения
отстойник
отстой (шлам)
Ответ: Схема осаждения Pb2+ и F– включает 2 реактора смешения и отстйник.
Pb осаждают Na3PO4;.F– осаждают Ca(OH)2.
2+
Пример 5. Нейтрализуемая сточная вода содержит 7 г·л-1 FeSO4 и 10,3 г·л-1
H2SO4. Применяемая для нейтрализации негашеная известь содержит 50% активной
СаО. Расход сточных вод равен 120 м3·сут-1. Определите количество необходимой
негашеной извести и массу образовавшегося осадка.
Решение:
При нейтрализации сточной воды протекают реакции:
H2SO4 + CaO = CaSO4 + Н2О
98 г/моль 56 г/моль 136 г/моль
FeSO4 + СаО + Н2О = Fe(OH)2 + CaSO4
152 г/моль 56 г/моль 90 г/моль
136 г/моль
Массу извести рассчитываем по уравнению:
Gуд = kз
100
(aС0 + b1C1),
B
где kз – коэффициент запаса расхода реагента (коэффициент запаса принимается
равным 1,5 для сухой негашеной извести);
В – массовая доля активной части в товарном продукте, %;
а – стехиометрический расходный коэффициент реагента на нейтрализацию кислоты,
кг·кг-1;
b1– стехиометрический расходный коэффициент реагента на осаждение ионов железа,
кг·кг-1;
С0 – массовая концентрация кислоты, г·л-1 (или кг·м-3);
C1 – массовая концентрация ионов железа, г·л-1 (или кг·м-3).
Расход реагента на весь объем нейтрализуемой ПСВ G = Gуд · Q,
Q – объем ПСВ, подлежащих нейтрализации, л (или м3)
Согласно уравнениям реакций а = 56 / 98 = 0,57 г·г-1;
b1 = 56 / 90 = 0,37 г·г-1.
Gуд = 1,5 · 100 / 50 · (0,57∙10,3 + 0,37∙7,0) = 25,5 г·л-1;
Расход реагента на весь объем нейтрализуемой ПСВ G = Gуд · Q,
G = 25,5 · 120 · 103 = 3060 · 103 г·сут-1 = 3060 кг·сут-1
Масса осадка:
Gос уд =
100  B
(х0 + х1) + у1 + (z0 + z1 – 2)
B
x0 – масса СаО, небходимого для нейтрализации серной кислоты, содержащейся в 1л
(или 1м3) в ПСВ
х1 – масса СаО, небходимого для осаждения ионов железа, содержащихся в 1л (или
1м3) ПСВ;
100  B
(х0 + х1) – масса нерастворимых примесей в СаО, выпадающих в осадок при
B
нейтрализаци1л (или 1м3) ПСВ;
у1 – масса гидроксида железа (II), образующегося при нейтрализации 1л (или 1м3)
ПСВ,
z0 – масса СaSO4, образующегося при нейтрализации 1л (или 1м3) ПСВ,
z1 – масса СaSO4, образующегося при осаждении ионов железа из 1л (или 1м3) ПСВ,
2 – растворимость СaSO4, г·л-1 (или кг·м-3).
Расчет х0 х1 у1 z1 осуществляем по уравнению реакции:
х0 = 10,3 · 56 /98 = 5,9 г·л-1;
х1 = 7,0 · 56 / 152 = 2,6 г·л-1;
у1 = 7,0 · 90 / 152 = 4,1 г·л-1;
z0 = 10,3 · 136 /·98 = г·л-1;
z1= 7,0 · 136 / 152 = 7,8 г·л-1.
Gос уд = (100 – 50)/50 ∙ (5,9 + 2,6) + 4,1 + (14,3 + 6,3 – 2) = 31,2 г·л-1.
М асса осадка, образующегося при нейтрализации всего объема ПСВ, Gос равна
Gос = Gос уд · Q = 31,2 · 120 · 103 = 3744 · 103 г·сут-1 = 3744 кг·сут-1
Ответ: Масса негашеной извести, необходимой для нейтрализации серной
кислоты и осаждения иона железа, равна 3060 кг·сут-1, масса образующегося осадка
равна 3744 кг·сут-1.
3 ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ
1. Кислые сточные воды содержат 4 г·л-1 H2SO4 и 3 г·л-1 HNO3. Щелочные
сточные воды содержат 3,4 г·л-1 Na2CO3. Рассчитайте отношение объемов нейтрализуемых сточных вод.
2. Кислые сточные воды содержат 3,8 г·л-1 HF и HCl в количестве 0,2 моль·л-1.
Щелочные сточные воды содержат КОН в количестве 0,2 моль·л-1. Рассчитайте
отношение объемов нейтрализуемых сточных вод.
3. Кислые сточные воды содержат 4 г·л-1H2SO4.Щелочные сточные воды содержат 2 г·л-1 КОН и 3 г·л-1 К2СО3. Рассчитайте отношение объемов нейтрализуемых
сточных вод.
4. Кислые сточные воды содержат 3,6 г·л-1 HF и 7,1 г·л-1 HCl. Щелочные
сточные
воды
содержат
K2CO3
нейтрализуемых сточных вод.
5,5
г·л-1.
Рассчитайте
отношение
объемов
5. Рассчитайте отношение объемов нейтрализуемых сточных вод, если рН
кислых стоков равен 3, а рН щелочных стоков – 10.
6. Рассчитайте отношение объемов нейтрализуемых сточных вод, если рН
кислых стоков равен 2,5, а рН щелочных стоков равен 11.
7. Рассчитайте отношение объемов нейтрализуемых сточных вод, если рН
кислых стоков равен 3,5, а рН щелочных стоков – 11,5.
8. Отходы производства содержат 1% (масс.) H2SO4 (ρ = 1,05 г·мл-1). Определите
объем 0,08 %-ного раствора Са(ОН)2, необходимого для нейтрализации 20000 кг
отходов, содержащих H2SO4.
9. Для удаления фосфатов из сточных вод используют их осаждение с помощью
Al2(SO4)3. Концентрация ионов PO43- в сточных водах равна 0,003% (масс.).
Определите, какое количество Al2(SO4)3 необходимо закупать каждый год для
обработки сточных вод, расход которых составляет 40 л·с-1. Определите количество
осадка, образующегося при полном осаждении фосфатов.
10. Определите, при каком рН начнется осаждение гидроксида цинка из
раствора, содержащего 1 мг·л-1 ионов цинка. ПР(Zn(OH)2) = 1∙10-17.
11. Для обработки сточных вод, содержащих свинец, используются либо
Са(ОН)2, либо NaOH. Определите концентрацию ионов Pb2+, остающихся в растворе
при рН = 7, при рН = 10. ПР (Pb(OH)2) = 5,0∙10-16.
12. Допустимое содержание свинца в очищенных сточных водах составляет 0,03
мг·л-1. Определите, соответствует ли требованиям содержание свинца в сточных водах
после обработки Na2CO3. ПР(PbCO3) = 1,5∙10-13. Определите, как влияет увеличение рН
раствора на осаждение ионов Pb2+.
13. Определите концентрацию ионов Cr3+, остающихся в растворе после
осаждения хрома из раствора в виде Cr(OH)3 при рН = 7 и рН = 10. ПР(Cr(OH)3) =
6,7∙10-31.
14. Определите, при каком значении рН начнется осаждение Fe(OH)2 из
раствора, содержащего 700 мг·л-1 ионов Fe2+. ПР(Fe(OH)2) = 1∙10-15.
15. Определите, при каком рН целесообразно проводить осаждение Ni2+ и Cu2+ в
виде гидроксидов из раствора, содержащего 1,6 г·л-1 CuSO4
и
3,1 г·л-1 NiSO4.
ПР(Cu(OH)2) = 5,6∙10-20. ПР(Ni(OH)2) = 1,0∙10-15.
16. Определите концентрацию ионов CN–, содержащихся в электролите, в состав
которого входит Cu(CN)2 при рН = 5. ПР(Сu(ОН)2) = 5,6∙10-20.
17. Нейтрализуемая сточная вода содержит 1,5 мг·л-1 NiSO4 и 4,9 г·л-1 H2SO4.
Применяемая для нейтрализации суспензия содержит 5% Са(ОН)2. Расход сточных вод
60 м3·час-1. Определите массу необходимой извести и массу образующегося осадка в
сутки. Содержание активной части в негашеной извести 56%.
18. Нейтрализуемая сточная вода содержит 3,2 г·л-1 СuSO4, 6,2 г·л-1 NiSO4 и 4,9
г·л-1 H2SO4. Применяемая для нейтрализации известь содержит 60% активного СаО.
Расход сточных вод 100 м3·сут-1. Определите количество необходимой извести и массу
образующегося осадка в сутки.
19. Нейтрализуемая сточная воды содержит 1,61 г·л-1 ZnSO4, 3,04 г·л-1 FeSO4 и
4,9 г·л-1 H2SO4. Применяемая для нейтрализации суспензия содержит 5% (масс.)
Са(ОН)2. Расход сточных вод 20 м3·час-1. Определите массу осадка, образующегося в
сутки.. Рассчитайте объем воды, необходимой для приготовления суспензии Са(ОН)2 в
сутки.
20. Нейтрализуемая сточная вода содержит 3 г·л-1 FeSO4 и 9,8 г·л-1 H2SO4.
Применяемая для нейтрализации известь содержит 70% активного СаО. Расход
сточных вод 1,2 л·с-1. Определите количество необходимой извести и массу образующегося осадка в сутки.
21. Нейтрализуемая сточная вода содержит 1 мг·л-1 CuSO4 и 2 мг·л-1 NiSO4, а
также 1 г·л-1 H2SO4. Применяемая для нейтрализации суспензия содержит 5% Са(ОН)2.
Расход сточных вод 100 м3·сут-1. Определите массу необходимого Са(ОН)2 и массу
образующегося осадка в сутки.
22. Нейтрализуемая сточная вода содержит 2,4 г·л-1 CuSO4, 5,0 г·л-1 CdSO4 и 9,8
г·л-1 H2SO4. Применяемая для нейтрализации известь содержит 70% активного СаО.
Расход сточных вод 1,2 л·с-1. Определите количество необходимой извести и массу
образующегося осадка в сутки.
23. Нейтрализуемая сточная вода содержит 3,2 мг·л-1 ZnSO4, 4,0 мг·л-1 CdSO4 и
8 г·л-1 H2SO4. Применяемая для нейтрализации известь содержит 65% активной части.
Расход сточных вод 0,5 л·с-1. Рассчитайте массу необходимой извести и массу образующегося осадка в месяц.
24. Отходы гальванических производств содержат Cr2O72-. Предложите химические процессы для удаления Cr2O72- из сточных вод в две стадии. Назовите возможные химические реагенты, необходимые для этого. Составьте уравнения реакций.
25. Для удаления окалины Fe3O4 с поверхности стальных изделий может быть
использована соляная кислота: Fe3O4 + 8HCl + Fe → 4FeCl2 + 4H2O + (HCl)изб.
Предложите способ утилизации избыточной соляной кислоты и FeCl2. Назовите
необходимые для этого химические реагенты. Составьте уравнения реакций.
26. Вычислите массу гипохлорита натрия (товарного продукта, содержащего
45% активного хлора), необходимого в сутки для окисления CN–-ионов в сточных
водах гальванического цеха. Концентрация цианид-ионов 1 г·л-1. Расход сточной воды
0,5 м3·час-1. Коэффициент запаса kз = 1,2.
27. Вычислите истинную дозу коагулянта в пересчете на технический продукт,
если
при
контрольных
определениях
щелочности
в
процессе
коагуляции
зафиксировано ее падение с 4,8 до 3,25 мэкв·л-1. Содержание активной части в
сульфате алюминия составляет 62%.
28. Вычислите истинную дозу коагулянта в пересчете на технический продукт,
если в процессе коагуляции зафиксировано падение щелочности с 5,0 до 3,3 мэкв·л-1.
Содержание активной части в сульфате железа (III) составляет 70%.
Download