Метод оценки мольных объемов и составов CO2-H2O

advertisement
RMS DPI 2008-1-7-0
http://www.minsoc.ru/2008-1-7-0
Ɇɟɬɨɞ ɨɰɟɧɤɢ ɦɨɥɶɧɵɯ ɨɛɴɟɦɨɜ ɢ ɫɨɫɬɚɜɨɜ CO2-H2O-NaCl ɮɥɸɢɞɧɵɯ
ɜɤɥɸɱɟɧɢɣ ɧɚ ɨɫɧɨɜɟ ɦɢɤɪɨɬɟɪɦɨɦɟɬɪɢɱɟɫɤɢɯ ɢ ɨɩɬɢɱɟɫɤɢɯ ɢɡɦɟɪɟɧɢɣ
ɉɚɢɧɫɢ Ɇ.1, Ⱦɚɣɦɨɧɞ Ʌ.ȼ.1, Ⱥɤɢɧɮɢɟɜ ɇ.ɇ.2
1
ɂɧɫɬɢɬɭɬ ɝɟɨɥɨɝɢɱɟɫɤɢɯ ɧɚɭɤ, Ȼɟɪɧɫɤɢɣ ɭɧɢɜɟɪɫɢɬɟɬ, Ȼɟɪɧ, ɒɜɟɣɰɚɪɢɹ
2
ɂȽȿɆ ɊȺɇ, Ɇɨɫɤɜɚ, Ɋɨɫɫɢɹ, akinfiev@igem.ru
Determination of molar volume and composition of CO2-H2O-NaCl fluid
inclusions using combined microthermometric and optical mesurements
1
Painsi M.1, Diamond L.W.1, Akinfiev N.N.2
Institute of Geological Sciences, University of Bern, Bern, Switzerland
2
IGEM RAS, Moscow, Russia, akinfiev@igem.ru
Summary. A method to determine the bulk volume (Vm) - composition (x) properties of a
common class of CO2-H2O-NaCl inclusions that at laboratory temperature consist of saline
aqueous liquid plus two carbonic phases has been developed. This method allows the bulk Vm-x
values of individual inclusions to be estimated based from 5 input parameters: (1) the
microthermometric temperature of clathrate-hydrate dissociation and (2) the identity of the
phases involved in this transition; (3) the microthermometric temperature at which the carbonic
phases homogenize and (4) the identity of the phases involved in this transition; and (5) the
volume-fraction of the carbonic phases measured in an optical spindle-stage at laboratory
temperature. Both the Vm–X diagrams and the computer code also quantify the uncertainties in
the results. The uncertainties vary with bulk composition and molar volume but they are
typically within a few percent when the inclusions are dominated by H2O, which is sufficiently
accurate for a wide range of applications in geochemistry.
ȼɜɟɞɟɧɢɟ. Ȼɨɥɶɲɢɧɫɬɜɨ ɩɪɢɪɨɞɧɵɯ ɮɥɸɢɞɧɵɯ ɜɤɥɸɱɟɧɢɣ ɜ ɦɢɧɟɪɚɥɚɯ ɦɨɝɭɬ ɛɵɬɶ
ɨɩɢɫɚɧɵ ɧɚ ɨɫɧɨɜɟ ɬɪɨɣɧɨɣ ɦɨɞɟɥɶɧɨɣ ɫɢɫɬɟɦɵ CO2–H2O–NaCl. Ɉɞɧɚɤɨ, ɧɟɫɦɨɬɪɹ ɧɚ
ɲɢɪɨɤɭɸ ɪɚɫɩɪɨɫɬɪɚɧɟɧɧɨɫɬɶ ɬɚɤɢɯ ɜɤɥɸɱɟɧɢɣ, ɜ ɧɚɫɬɨɹɳɟɟ ɜɪɟɦɹ ɨɬɫɭɬɫɬɜɭɸɬ
ɚɧɚɥɢɬɢɱɟɫɤɢɟ ɦɟɬɨɞɵ ɨɞɧɨɜɪɟɦɟɧɧɨɝɨ ɨɩɪɟɞɟɥɟɧɢɹ ɤɨɧɰɟɧɬɪɚɰɢɣ ɝɚɡɚ ɢ ɷɥɟɤɬɪɨɥɢɬɚ ɜ
ɢɧɞɢɜɢɞɭɚɥɶɧɵɯ ɜɤɥɸɱɟɧɢɹɯ. ȼ ɬɨɠɟ ɜɪɟɦɹ ɜ ɫɨɨɬɜɟɬɫɬɜɢɢ ɫ ɩɪɚɜɢɥɨɦ ɮɚɡ
ɦɢɤɪɨɬɟɪɦɨɦɟɬɪɢɱɟɫɤɨɟ ɨɛɧɚɪɭɠɟɧɢɟ ɬɪɟɯ ɧɨɧɜɚɪɢɚɧɬɧɵɯ ɮɚɡɨɜɵɯ ɩɟɪɟɯɨɞɨɜ ɜ ɬɚɤɨɣ
ɫɢɫɬɟɦɟ ɜ ɩɪɢɧɰɢɩɟ ɞɨɥɠɧɨ ɛɵɬɶ ɞɨɫɬɚɬɨɱɧɵɦ ɞɥɹ ɨɩɪɟɞɟɥɟɧɢɹ ɮɢɡɢɤɨ-ɯɢɦɢɱɟɫɤɢɯ
ɩɚɪɚɦɟɬɪɨɜ (ɦɨɥɶɧɨɝɨ ɨɛɴɟɦɚ ɜɤɥɸɱɟɧɢɹ ɢ ɫɨɫɬɚɜɚ ɤɚɠɞɨɣ ɢɡ ɮɚɡ) ɬɪɨɣɧɨɣ ɫɢɫɬɟɦɵ. ȼ
ɪɚɦɤɚɯ ɧɚɫɬɨɹɳɟɣ ɪɚɛɨɬɵ ɩɪɟɞɥɨɠɟɧ ɦɟɬɨɞ ɨɰɟɧɤɢ ɦɨɥɶɧɵɯ ɨɛɴɟɦɨɜ ɢ ɫɨɫɬɚɜɨɜ CO2H2O-NaCl ɢɧɞɢɜɢɞɭɚɥɶɧɵɯ ɮɥɸɢɞɧɵɯ ɜɤɥɸɱɟɧɢɣ, ɜ ɤɨɬɨɪɵɯ ɜ ɨɩɪɟɞɟɥɟɧɧɨɦ ɞɢɚɩɚɡɨɧɟ
ɬɟɦɩɟɪɚɬɭɪ ɩɪɨɢɫɯɨɞɢɬ ɨɛɪɚɡɨɜɚɧɢɟ CO2 – ɤɥɚɬɪɚɬ-ɝɢɞɪɚɬɚ, ɚ ɬɚɤɠɟ ɜɨɡɦɨɠɧɨ (ɩɭɫɬɶ ɢ
ɦɟɬɚɫɬɚɛɢɥɶɧɨɟ) ɫɨɫɭɳɟɫɬɜɨɜɚɧɢɟ ɞɜɭɯ ɭɝɥɟɤɢɫɥɨɬɧɵɯ (ɩɚɪɨɜɨɣ ɢ ɠɢɞɤɨɣ) ɢ ɜɨɞɧɨɣ ɮɚɡ
(ɪɢɫ. 1). Ɍɚɤɨɝɨ ɪɨɞɚ ɜɤɥɸɱɟɧɢɹ ɬɢɩɢɱɧɵ ɞɥɹ ɦɟɡɨɬɟɪɦɚɥɶɧɵɯ ɝɢɞɪɨɬɟɪɦɚɥɶɧɵɯ ɭɫɥɨɜɢɣ,
ɚ ɬɟɦɩɟɪɚɬɭɪɵ ɮɚɡɨɜɵɯ ɩɟɪɟɯɨɞɨɜ ɜ ɧɢɯ (ɬɟɦɩɟɪɚɬɭɪɚ ɩɥɚɜɥɟɧɢɹ ɤɥɚɬɪɚɬ-ɝɢɞɪɚɬɚ Tm(cla) ɢ
ɬɟɦɩɟɪɚɬɭɪɚ ɝɨɦɨɝɟɧɢɡɚɰɢɢ ɭɝɥɟɤɢɫɥɨɬɧɨɣ ɮɚɡɵ Th(car) ɜ ɩɪɢɫɭɬɫɬɜɢɢ ɜɨɞɧɨɣ) ɦɨɝɭɬ
ɛɵɬɶ ɢɡɭɱɟɧɵ ɜ ɭɡɤɨɦ ɞɢɚɩɚɡɨɧɟ ɬɟɦɩɟɪɚɬɭɪ (–20 … 31 °C ), ɯɚɪɚɤɬɟɪɧɨɦ ɞɥɹ
ɥɚɛɨɪɚɬɨɪɧɵɯ ɢɡɦɟɪɟɧɢɣ. Ɍɪɟɬɢɣ ɮɚɡɨɜɵɣ ɩɟɪɟɯɨɞ – ɝɨɦɨɝɟɧɢɡɚɰɢɹ ɜɨɞɧɨɣ ɮɚɡɵ –
ɩɪɨɢɫɯɨɞɢɬ ɩɪɢ ɡɧɚɱɢɬɟɥɶɧɨ ɛɨɥɟɟ ɜɵɫɨɤɢɯ ɬɟɦɩɟɪɚɬɭɪɚɯ Th(aq), ɚ ɢɦɟɸɳɢɟɫɹ ɜ
ɥɢɬɟɪɚɬɭɪɟ ɭɪɚɜɧɟɧɢɹ ɫɨɫɬɨɹɧɢɹ ɦɨɞɟɥɶɧɨɣ CO2-H2O-NaCl ɫɢɫɬɟɦɵ, ɩɪɢɝɨɞɧɵɟ ɜɨ ɜɫɟɦ
ɞɢɚɩɚɡɨɧɟ ɬɟɦɩɟɪɚɬɭɪ Tm(cla) … Th(aq), ɧɟ ɨɛɟɫɩɟɱɢɜɚɸɬ ɬɨɱɧɨɫɬɢ, ɧɟɨɛɯɨɞɢɦɨɣ ɞɥɹ
ɩɪɨɜɟɞɟɧɢɹ ɚɧɚɥɢɡɚ ɝɚɡɨɜɨ-ɠɢɞɤɢɯ ɜɤɥɸɱɟɧɢɣ. ɂɦɟɧɧɨ ɩɨɷɬɨɦɭ ɜ ɧɚɫɬɨɹɳɟɣ ɪɚɛɨɬɟ
ɩɪɟɞɥɨɠɟɧ ɚɥɶɬɟɪɧɚɬɢɜɧɵɣ ɦɟɬɨɞ, ɤɨɝɞɚ ɜɦɟɫɬɨ ɩɚɪɚɦɟɬɪɚ Th(aq) ɢɫɩɨɥɶɡɭɟɬɫɹ ɪɟɡɭɥɶɬɚɬ
ɨɩɬɢɱɟɫɤɨɝɨ ɨɩɪɟɞɟɥɟɧɢɹ ɨɛɴɺɦɧɵɯ ɱɚɫɬɟɣ ɢɧɞɢɜɢɞɭɚɥɶɧɨɝɨ ɜɤɥɸɱɟɧɢɹ (ϕ), ɢɡɦɟɪɟɧɧɵɯ
ɩɪɢ ɤɨɦɧɚɬɧɨɣ ɬɟɦɩɟɪɚɬɭɪɟ Tlab = 15 … 25 °ɋ. Ɉɬɧɨɫɢɬɟɥɶɧɚɹ ɨɲɢɛɤɚ ɬɚɤɨɝɨ ɪɨɞɚ
ɨɩɪɟɞɟɥɟɧɢɣ ɩɨ ɦɟɬɨɞɢɤɟ, ɩɪɟɞɥɨɠɟɧɧɨɣ ɧɟɞɚɜɧɨ ɜ ɪɚɛɨɬɟ Bakker and Diamond (2006), ɧɟ
ɩɪɟɜɵɲɚɟɬ 4% , ɚ ɢɫɩɨɥɶɡɨɜɚɧɢɟ ɜɟɫɶɦɚ ɬɨɱɧɵɯ ɭɪɚɜɧɟɧɢɣ ɫɨɫɬɨɹɧɢɹ ɞɥɹ ɱɢɫɬɨɝɨ CO2
43
(Span and Wagner, 1996) ɢ
ɪɚɫɬɜɨɪɢɦɨɫɬɢ CO2 ɜ ɜɨɞɧɨɦ
ɪɚɫɬɜɨɪɟ NaCl ɞɥɹ ɬɟɦɩɟɪɚɬɭɪ ɞɨ
100°ɋ (Diamond, Akinfiev, 2003 ɢ
Akinfiev, Diamond, ɜ ɩɟɱɚɬɢ)
ɩɨɡɜɨɥɹɸɬ
ɩɪɟɞɥɨ-ɠɟɧɧɨɦɭ
ɦɟɬɨɞɭ ɨɫɬɚɜɚɬɶɫɹ ɜ ɩɪɟɞɟɥɚɯ 4%
ɬɨɱɧɨɫɬɢ ɞɥɹ ɨɰɟɧɤɢ ɨɛɴɺɦɧɵɯ ɢ
ɤɨɧɰɟɧɬ-ɪɚɰɢɨɧɧɵɯ
ɫɜɨɣɫɬɜ
ɮɥɸɢɞ-ɧɨɝɨ ɜɤɥɸɱɟɧɢɹ.
Ɉɫɧɨɜɧɵɟ
ɫɨɨɬɧɨɲɟɧɢɹ.
Ɋɚɫɫɦɨɬɪɢɦ
CO2–H2O–NaCl
ɜɤɥɸɱɟɧɢɟ, ɨɛɳɟɟ ɤɨɥɢɱɟɫɬɜɨ
ɜɟɳɟɫɬɜɚ
ɜ
ɤɨɬɨɪɨɦ
ɞɥɹ
ɨɩɪɟɞɟɥɟɧɧɨɫɬɢ
car
aq
aq
aq
n = nCO2 + nCO2 + nH2O
+ nNaCl
=1
Ɋɢɫ. 1. P–T ɩɪɨɟɤɰɢɹ ɧɢɡɤɨɬɟɦɩɟɪɚɬɭɪɧɨɣ ɱɚɫɬɢ
ɬɪɨɣɧɨɣ CO2–H2O–NaCl ɫɢɫɬɟɦɵ, ɩɨɤɚɡɵɜɚɸɳɚɹ ɨɛɥɚɫɬɶ
ɩɪɢɦɟɧɢɦɨɫɬɢ ɚɧɚɥɢɡɚ ɢɧɞɢɜɢɞɭɚɥɶɧɨɝɨ ɜɤɥɸɱɟɧɢɹ,
ɪɚɫɫɦɚɬɪɢɜɚɟɦɨɝɨ ɜ ɧɚɫɬɨɹɳɟɣ ɪɚɛɨɬɟ (ɩɭɧɤɬɢɪɧɵɟ ɥɢɧɢɢ
"Limiting bubble-point isochore" ɢ "Limiting dew-point
isochore").
Ƚɨɪɢɡɨɧɬɚɥɶɧɚɹ
ɫɬɪɟɥɤɚ
ɯɚɪɚɤɬɟɪɢɡɭɟɬ
ɭɦɟɧɶɲɟɧɢɟ ɩɨɥɹ ɫɬɚɛɢɥɶɧɨɫɬɢ ɤɥɚɬɪɚɬ-ɝɢɞɪɚɬɚ ɫ ɪɨɫɬɨɦ
ɤɨɧɰɟɧɬɪɚɰɢɢ NaCl. Ɍɨɱɤɚ «a» ɢɥɥɸɫɬɪɢɪɭɟɬ, ɤɚɤ
ɭɝɥɟɤɢɫɥɨɬɧɵɟ ɮɚɡɵ ɞɜɭɯ ɜɤɥɸɱɟɧɢɣ ɫ ɪɚɡɥɢɱɧɵɦɢ
ɦɨɥɶɧɵɦɢ ɨɛɴɟɦɚɦɢ ɦɨɝɭɬ ɝɨɦɨɝɟɧɢɡɢɪɨɜɚɬɶɫɹ ɩɪɢ ɨɞɧɨɣ
ɢ ɬɨɣ ɠɟ ɬɟɦɩɟɪɚɬɭɪɟ Th(car) = 14 °C ɩɪɢ ɧɚɝɪɟɜɚɧɢɢ: ɨɞɧɨ
ɜɤɥɸɱɟɧɢɟ – ɫ ɢɫɱɟɡɧɨɜɟɧɢɟɦ ɝɚɡɨɜɨɣ ɮɚɡɵ (ɢɡɨɯɨɪɚ 1), ɚ
ɞɪɭɝɨɟ – ɫ ɢɫɱɟɡɧɨɜɟɧɢɟɦ ɠɢɞɤɨɣ ɭɝɥɟɤɢɫɥɨɬɵ (ɢɡɨɯɨɪɚ 2).
Fig. 1. P-T projection of the low-temperature portion of the
CO2–H2O–NaCl system. Fluid inclusions within the class
treated in this study follow P–T trajectories between the dashed
curves labelled "limiting bubble-point isochore" and "limiting
dew-point isochore". The arrow indicates shrinkage of the
stability field of CO2–clathrate-hydrate (Cla) upon addition of
NaCl (relative to the H2O–NaCl subsystem). Point "a"
illustrates how the carbonic phases of two inclusions of
different molar volumes may homogenize at the same
temperature upon heating (Th(car) = 14 °C), one inclusion
undergoing a bubble-point transition to follow isochore 1, the
other undergoing a dew-point transition to follow isochore 2.
ɦɨɥɶ, ɝɞɟ n ɫɨɨɬɜɟɬɫɬɜɭɸɬ
ɤɨɥɢɱɟɫɬɜɚɦ
ɜɟɳɟɫɬɜɚ
ɜ
car
aq
ɤɚɪɛɨɧɚɬɧɨɣ ( ) ɢ ɜɨɞɧɨɣ ( )
ɮɚɡɚɯ. Ɉɛɳɢɣ ɨɛɴɟɦ ɜɤɥɸɱɟɧɢɹ
V ɜ ɷɬɨɦ ɫɥɭɱɚɟ ɪɚɜɟɧ ɟɝɨ
ɦɨɥɹɪɧɨɦɭ
ɨɛɴɟɦɭ
Vm
(ɫɦ3×ɦɨɥɶ-1). ɉɪɢɦɟɦ ɬɚɤɠɟ, ɱɬɨ
ɨɩɬɢɱɟɫɤɢɟ
ɢɡɦɟɪɟɧɢɹ
ɩɨɡɜɨɥɢɥɢ
ɨɩɪɟɞɟɥɢɬɶ
ɜɨ
ɨɛɴɟɦɧɭɸ
ɞɨɥɸ
CO2
ɜɤɥɸɱɟɧɢɢ
V car
ϕ car ≡
V
ɉɨɫɤɨɥɶɤɭ V = V car + V aq , ɢɦɟɟɦ
car
car
V car = Vmcar ⋅ nCO2
= VmCO2 ⋅ nCO2
= ϕ car ⋅ V
V aq = Vmaq ⋅ n aq = (1 − ϕ car ) ⋅ V
Ɂɞɟɫɶ VmCO2 – ɦɨɥɶɧɵɣ ɨɛɴɟɦ
ɱɢɫɬɨɝɨ CO2 (ɠɢɞɤɨɝɨ ɢɥɢ
ɝɚɡɨɨɛɪɚɡɧɨɝɨ) ɩɪɢ ɡɚɞɚɧɧɵɯ
ɞɚɜɥɟɧɢɢ P ɢ ɬɟɦɩɟɪɚɬɭɪɟ T, ɚ
Vmaq – ɦɨɥɶɧɵɣ ɨɛɴɟɦ ɬɪɨɣɧɨɣ
H2O-CO2-NaCl ɫɢɫɬɟɦɵ ɩɪɢ ɬɟɯ ɠɟ ɭɫɥɨɜɢɹɯ. ɗɬɚ ɩɨɫɥɟɞɧɹɹ ɜɟɥɢɱɢɧɚ ɡɚɜɢɫɢɬ ɨɬ
aq
aq
) ɢ NaCl ( bNaCl
) ɢ ɦɨɠɟɬ ɛɵɬɶ ɪɚɫɫɱɢɬɚɧɚ ɧɚ ɨɫɧɨɜɟ
ɦɨɥɹɥɶɧɨɫɬɟɣ ɪɚɫɬɜɨɪɟɧɧɵɯ CO2 ( bCO2
ɫɨɨɬɜɟɬɫɬɜɭɸɳɟɝɨ ɭɪɚɜɧɟɧɢɹ ɫɨɫɬɨɹɧɢɹ (Akinfiev, Diamond, ɜ ɩɟɱɚɬɢ). ɉɪɢ ɷɬɨɦ ɡɧɚɱɟɧɢɟ
aq
ɢɡɜɟɫɬɧɨ ɢɡ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨ ɢɡɦɟɪɟɧɧɨɣ ɬɟɦɩɟɪɚɬɭɪɵ ɨɛɪɚɡɨɜɚɧɢɹ ɤɥɚɬɪɚɬbNaCl
aq
ɝɢɞɪɚɬɚ ɜɨ ɜɤɥɸɱɟɧɢɢ Tm(cla) (Diamond, 1992), ɚ ɪɚɫɬɜɨɪɢɦɨɫɬɶ CO2 ɜ H2O-NaCl ( bCO2
)–
ɢɡ ɭɪɚɜɧɟɧɢɹ ɫɨɫɬɨɹɧɢɹ (Akinfiev, Diamond, ɜ ɩɟɱɚɬɢ) ɩɪɢ ɡɚɞɚɧɧɵɯ PT.
Ʉɨɦɛɢɧɢɪɭɹ ɩɨɥɭɱɟɧɧɵɟ ɫɨɨɬɧɨɲɟɧɢɹ, ɩɨɥɭɱɢɦ
car
VmCO2 ⋅ nCO2
ϕ car
ϕ car
Vmaq
car
=
n
=
×
× n aq .
,
ɬɚɤ
ɱɬɨ
CO2
aq
aq
car
CO2
car
Vm ⋅ n
1−ϕ
1−ϕ
Vm
44
car
ɉɨɫɤɨɥɶɤɭ nCO2
= 1 − n aq , ɢɦɟɟɦ
1
n aq =
1+
Vmaq
ϕ car
×
VmCO2 1 − ϕ car
, ɢ ɨɤɨɧɱɚɬɟɥɶɧɨ Vm =
Vmaq
.
Vmaq
car
car
1 − ϕ + CO2 × ϕ
Vm
Ɇɟɬɨɞɵ ɢ ɪɟɡɭɥɶɬɚɬɵ.
Ɉɩɢɫɚɧɧɵɟ ɜɵɲɟ ɫɨɨɬɧɨɲɟɧɢɹ
ɜɦɟɫɬɟ ɫ ɭɪɚɜɧɟɧɢɹɦɢ ɫɨɫɬɨɹɧɢɹ
CO2 (Span and Wagner, 1996) ɢ
(Akinfiev,
CO2-H2O-NaCl
ɜ
ɩɟɱɚɬɢ)
ɢ
Diamond,
ɤɨɪɪɟɥɹɰɢɨɧɧɵɦɢ ɭɪɚɜɧɟɧɢɹɦɢ
(Diamond, 1992) ɥɟɠɚɬ ɜ ɨɫɧɨɜɟ
ɤɨɦɩɶɸɬɟɪɧɨɣ ɩɪɨɝɪɚɦɦɵ VxTern.exe ɞɥɹ ɪɚɫɱɟɬɚ V-x ɫɜɨɣɫɬɜ
ɢɧɞɢɜɢɞɭɚɥɶɧɨɝɨ
ɮɥɸɢɞɧɨɝɨ
ɜɤɥɸɱɟɧɢɹ ɧɚ ɨɫɧɨɜɟ ɞɚɧɧɵɯ
ɥɚɛɨɪɚɬɨɪɧɵɯ
ɢɡɦɟɪɟɧɢɣ.
Ɋɚɫɫɦɨɬɪɢɦ ɜ ɤɚɱɟɫɬɜɟ ɩɪɢɦɟɪɚ
ɢɦɟɸɳɟɟ
ɩɪɢ
ɜɤɥɸɱɟɧɢɟ,
ɤɨɦɧɚɬɧɨɣ ɬɟɦɩɟɪɚɬɭɪɟ Tlab ɬɪɢ
ɫɨɫɭɳɟɫɬɜɭɸɳɢɟ ɮɚɡɵ: ɠɢɞɤɭɸ
ɜɨɞɧɭɸ ɢ ɞɜɟ ɤɚɪɛɨɧɚɬɧɵɟ
(ɠɢɞɤɭɸ ɢ ɝɚɡɨɨɛɪɚɡɧɭɸ). ȼ
ɪɟɡɭɥɶɬɚɬɟ
ɬɟɪɦɨɦɟɬɪɢɱɟɫɤɢɯ
ɱɬɨ
ɢɡɦɟɪɟɧɢɣ
ɩɨɥɭɱɟɧɨ,
ɨɛɪɚɡɨɜɚɧɢɟ
ɤɥɚɬɪɚɬ-ɝɢɞɪɚɬɚ
ɫɨɨɬɜɟɬɫɬɜɭɟɬ
ɬɟɦɩɟɪɚɬɭɪɟ
Tm(cla) = 6.8 °C, ɚ ɬɟɦɩɟɪɚɬɭɪɚ
ɝɨɦɨɝɟɧɢɡɚɰɢɢ
ɭɝɥɟɤɢɫɥɨɬɧɵɯ
ɮɚɡ – Th(car) = 25 °C. Ɉɛɳɚɹ
ɨɛɴɟɦɧɚɹ ɞɨɥɹ ɭɝɥɟɤɢɫɥɨɬɵ,
ɩɨɥɭɱɟɧɧɚɹ
ɢɡ
ɨɩɬɢɱɟɫɤɢɯ
ɢɡɦɟɪɟɧɢɣ ɩɪɢ Tlab , ɫɨɫɬɚɜɥɹɟɬ
40%. «Ⱦɢɚɥɨɝ» ɫ ɩɪɨɝɪɚɦɦɨɣ
ɩɨɤɚɡɚɧ ɧɚ ɪɢɫ. 2, ɚ ɪɟɡɭɥɶɬɚɬɵ
ɪɚɫɱɟɬɚ ɫɨɫɬɚɜɥɹɸɬ: Vm = 25.51 ±
0.41 ɫɦ3×ɦɨɥɶ-1, ɚ ɦɨɥɶɧɵɟ ɞɨɥɢ
ɤɨɦɩɨɧɟɧɬɨɜ ɜɨ ɜɤɥɸɱɟɧɢɢ – xCO2
= 0.18 ± 0.01, xH2O = 0.80 ± 0.01,
xNaCl = 0.016 ± 0.001.
Vmaq
× n aq =
1 − ϕ car
Ɋɢɫ. 2. Ɏɨɪɦɚ «ɞɢɚɥɨɝɚ» ɩɪɨɝɪɚɦɦɵ Vx-Tern.exe ɩɪɢ
ɪɚɫɱɟɬɟ ɨɛɴɟɦɧɵɯ ɢ ɤɨɧɰɟɧɬɪɚɰɢɨɧɧɵɯ ɫɜɨɣɫɬɜ
ɦɨɞɟɥɶɧɨɝɨ ɜɤɥɸɱɟɧɢɹ ɧɚ ɨɫɧɨɜɟ 5 ɩɚɪɚɦɟɬɪɨɜ,
ɭɫɬɚɧɨɜɥɟɧɧɵɯ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨ: (1) ɬɟɦɩɟɪɚɬɭɪɵ
(2)
ɢ
ɨɛɪɚɡɨɜɚɧɢɹ
ɤɥɚɬɪɚɬ-ɝɢɞɪɚɬɚ
Tm(cla),
ɫɨɫɭɳɟɫɬɜɭɸɳɢɯ ɮɚɡ ɩɪɢ ɷɬɨɣ ɬɟɦɩɟɪɚɬɭɪɟ, (3)
ɬɟɦɩɟɪɚɬɭɪɵ ɝɨɦɨɝɟɧɢɡɚɰɢɢ ɭɝɥɟɤɢɫɥɨɬɧɵɯ ɮɚɡ Th(car),
(4) ɢ ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɯ ɫɨɫɭɳɟɫɬɜɭɸɳɢɯ ɮɚɡ, ɚ ɬɚɤɠɟ (5)
ɨɩɬɢɱɟɫɤɢ ɢɡɦɟɪɟɧɧɨɣ ɨɛɴɟɦɧɨɣ ɱɚɫɬɢ ɭɝɥɟɤɢɫɥɨɬɧɵɯ
ɮɚɡ ɩɪɢ ɤɨɦɧɚɬɧɨɣ ɬɟɦɩɟɪɚɬɭɪɟ Tlab.
Fig. 2. Type of “dialog” of the Vx-Tern.exe code while
computing the bulk Vm–X values of individual inclusions to
be estimated from 5 input parameters: (1) the
microthermometric
temperature
of
clathrate-hydrate
dissociation, Tm(cla), and (2) the identity of the phases
involved in this transition; (3) the microthermometric
temperature at which the carbonic phases homogenize,
Th(car), and (4) the identity of the phases involved in this
transition; and (5) the volume-fraction of the carbonic phases
measured in an optical spindle-stage at laboratory
temperature, Tlab.
(
)
Ɋɚɛɨɬɚ ɜɵɩɨɥɧɟɧɚ ɩɪɢ ɮɢɧɚɧɫɨɜɨɣ
ɩɨɞɞɟɪɠɤɟ ɝɪɚɧɬɨɜ ɊɎɎɂ 05-0566811-ɇɐɇɂɅ_ɚ
ɜ
ɪɚɦɤɚɯ
ȿɜɪɨɩɟɣɫɤɨɣ
Ⱥɫɫɨɰɢɢɪɨɜɚɧɧɨɣ
ɥɚɛɨɪɚɬɨɪɢɢ LEAGE (Ⱥɤɢɧɮɢɟɜ
ɇ.ɇ.) ɢ Swiss National Science
Foundation Grant 200020–111834/1
(Ⱦɚɣɦɨɧɞ Ʌ.ȼ.).
Ʌɢɬɟɪɚɬɭɪɚ.
Akinfiev N. N. and Diamond L. W. (ɜ ɩɟɱɚɬɢ) Solubility of CO2 in aqueous NaCl solutions from –1.5 to
100 °C and from 0.1 to 100 MPa: Evaluation of literature data and thermodynamic modelling //
Fluid Phase Equil.
45
Bakker R. J. and Diamond L. W. (2006) Estimation of volume fractions of liquid and vapor phases in
fluid inclusions, and definition of inclusion shapes // Am. Mineral. 91. 635-657.
Diamond L. W. (1992) Stability of CO2-clathrate-hydrate + CO2 liquid + CO2 vapour + aqueous KClNaCl solutions: Experimental determination and application to salinity estimates of fluid inclusions
// Geochim. Cosmochim. Acta. 56. 273-280.
Diamond L. W. and Akinfiev N. N. (2003) Solubility of CO2 in water from –1.5 to 100 °C and from 0.1
to 100 MPa: Evaluation of literature data and thermodynamic modelling // Fluid Phase Equil. 208.
263-288.
Span R., Wagner W.(1996) A New Equation of State for Carbon Dioxide Covering the Fluid Region from
the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa // J. Phys. Chem. Ref. Data 25.
1509-1596.
46
Download