Полный отчет программы 2009

advertisement
15
»
1
.
2009 .
.
2
I.
:
.............................................................................................................................................................7
.
.
......................................................................................................................................................... 18
:
.
......................................................................................................................................................... 29
.
,
.
............................................................................................................................ 38
.
....................................................................................................................................................... 48
.
....................................................................................................................................................... 56
–
.
........................................................................................................................................................ 60
.
..................................................................................................................................................... 67
.
................................................................................................................................................... 77
:
(U-TH-PB, HF, O, REE)
.
,
.
.......................................................................................................................... 87
,
.
........................................................................................................................................................ 94
.
................................................................................................................................................... 101
II.
.
............................................................................................................................................. 107
K/NA
.
.................................................................................................................................................. 129
,
)
,
,
.
.................................................................................................................................................... 135
.
.................................................................................................................................................... 143
3
:
.
....................................................................................................................................................... 151
–
.
................................................................................................................................................ 159
.
................................................................................................................................................... 168
.
................................................................................................................................................. 177
.
.
,
.
...................................................................................................................... 185
......................................................................................................................................................... 189
,
.
.................................................................................................................................................... 197
.
.................................................................................................................................................... 201
.
................................................................................................................................................ 207
.
..................................................................................................................................................... 215
-
.
.................................................................................................................................................... 219
,
.
.................................................................................................................................................. 223
.
................................................................................................................................................. 238
(
)
.................................................................................................................................................. 243
.
III.
:
.
.................................................................................................................................................. 251
.
.................................................................................................................................................. 262
,
.
4
................................................................................................................................................ 269
.
................................................................................................................................................... 276
CC
.
,
,
....................................................................................................................................................... 286
.
.................................................................................................................................................... 290
.
.................................................................................................................................................. 298
:
,
.
.
,
.
,
,
,
........................................................................................................................... 306
................................................................................................................................................ 313
.
.
,
................................................................................................................................................... 317
.
«
»
................................................................................................................................................. 325
.
............................................................................................................................................... 335
.
.......................................................................................................................................................... 341
.
................................................................................................................................................. 357
.
.................................................................................................................................................... 363
.
....................................................................................................................................................... 368
.
....................................................................................................................................................... 379
5
6
:
:
:
.
,
.
,
.
.
.
,
.
,
.
,
.
.
c
.
,
Fe
.
(fO2),
.
fO2
,
«
CH4 H–Si, S–C, Si-H, Me–C)
c
2-
-
» (H2O, CO2, OH , CO3 )
.
«
» (H2,
[Kadik, et al., 2004;
., 2006].
–
[Miyazaki, et al., 2004; Libourel, et al., 2003;
Roskosz, et al., 2006; Kadik and Litvin, 2007].
[Kadik, et al., 2004;
., 2006;
2008]
,
.
,
fO2
,
fO2.
N2
,
fO2,
,
.
,
,
.
.
N–N, N–Si, N–H, N–O, N–C
-
fO2,
,
NH3, NH4+,
Si3N4, CN ,
.
7
.
,
,
1.5
,
1600
4
, 1400-1600 ,
.
2009
(FeO+NaAlSi3O8)+
) + H+ N
1.5
4
, 1400-
fO2,
5
,
logfO2(IW)
(IW).
,
,
logfO2(IW)
fO2
-2
-
,
,
,
,
(NH3, NH4+, Si3N4, CN-
.),
fO2
.
(
(
)
)
–
.
NaAlSi3O8
,
,
.
(NaAlSi3O8)
Al2O3
Na2CO3.
,
SiO2,
,
,
3
1400 , 1
.
3–4
.
100–200
,
, 3
.
20
SiC, Si3N4
24
.
200
1.
1.
(%
L5
NaAlSi3O8 (
.
FeO
,
) + FeO + Si3N4,
.)
99%AbFeO+1%Si3N4
SiO2
Al2O3
FeO
Na2O
Si
N
54.4
15.4
19.8
9.4
0.6
0.4
L6
97%AbFeO+3%Si3N4
53.3
15.1
19.4
9.2
1.8
1.2
L7
95%AbFeO+5%Si3N4
52.2
14.8
19.0
9.0
3.0
2.0
L8
93%AbFeO+7%Si3N4
51.1
14.5
18.6
8.8
4.2
2.8
4
1550–1600
1400
1.5
, 1981; Kadik, et al., 2004].
3
6
[
5
0.1
8
.
Pt
10
5
.
Pt
0.05
Pt.
Pt30%Rh/Pt6%Rh
(
1500
5
).
1600
10
.
[Bohlen, Boettcher, 1982].
0.1
. 1.
, 1962]
,
[
,
.
Pt
5
Pt–Pt10Rh
±0.1
,
15
0.2
.
0.05
Pt.
±5 ,
200
.
0.2
.
Pt
120
.
.
~200
.
fH2,
,
[Kadik, et al., 2004].
f
2,
IW.
fH2
2
.
T,
f
fH2 /fH2
Pt
2
.
,
2,
f 2
,
.
2
:
2FeO=2Fe+
2.
SiC
(1)
:
SiC(
Si3N4 (
.)+O2= SiO2
Si3N4
.) + 3O2
)+
:
3SiO2
).
(2)
) +2N2 (
.
(1–3)
),
f
(3)
.
2
f 2(exp)
IW
logfO2(IW) = logfO2(IW) – log f 2(exp),
fO2(IW)
f 2(exp)
IW
,
logfO2(IW)
Fe FeO
[e.g. Drake et al., 1989]
logfO2(IW) = 2log(aFeO/aFe)
FeO
FeO–
Fe
.
fO2
(4)
.
(5)
, aFe –
(
(x)
a= x·
logfO2(IW) = 2log (xFeO/xFe) + 2log ( FeO/
Fe)
(6).
9
f
2(exp),
,
[
.
.,
1992]
logfO2(exp) = 2log(XFeO/aFe) – h/T(K) – dXi),
h d–
, X i(%
.).
(7)
(7)
,
,
.
lgfO2(IW)
fO2(IW)
O’Neill and Pownceby [1993].
(
fO2
),
Fe
30–100
.
,
,
,
Fe
Fe
.
,
.
Fe
.
C meca (Camebax-microbeam
.,
logf
Fe
W
Pt
(
Fe
(IW)
=
-3.9.
2
Fe.
Pt
0.1–1 %
.).
Pt
0.1 %
.
Cameca SX100).
Fe
,
2 %
.,
Pt
W
.
18 %
.
Fe
W
Fe
,
0.4–1.9 %
W
,
.
2.
(%
.)*
4
1550
L5
L6
L7
L8
logfO2(IW)
-2.2
-2.4
-3.1
-3.9
FeO
9.21 (12)
8.58 (11)
4.02 (9)
SiO2
62.17 (28)
64.12 (35)
68.84 (13)
Al2O3
15.56 (7)
15.64 (12)
15.57 (15)
Na2O
8.47 (7)
8.74 (11)
8.14 (13)
N
0.36 (7)
1.22 (6)
1.57 (9)
Total
95.77 (29)
98.30 (50)
98.14 (31)
2.45 (37)
70.45 (10)
15.58 (13)
8.51 (15)
1.86 (14)
98.85 (43)
10
.
.
1
H+/30Si+
Cameca IVS 3f (
).
.
O2
1200
10
-
10–15 nA
100±20 eV.
0.2–0.4 %
.
1
30 +
H+
Si
10 µm
N–H–O
C–H–O
,
,
,
,
fO2.
N
180º
CCD
Spectra Physics Ar+
T-64000 (Jobin Yvon),
,
.
514.5
50-
2
,
.
1
-1
.
1
200
2
,
.
3
80
140
.
«Bruker IFS–113v»,
Microscope A590”,
“IR
50
5
400
.
,
,
.
350
5000
-1
2
-1
0.1%.
,
128
.
. 1.
4000
H–H
0–4200
-1
,
O–H
3544
-1
logfO2(IW) = -2.2
3570 -1,
,
[Mysen, Virgo, 1986; Luth, et al., 1987].
OH2
fO2.
,
.
,
al., 1985]
N–H
N–H
N–N
.
,
,
3400–3700
3400 -1.
.
1500N–H, N–N,
,
.
.
1
-1
-1
,
-2.4
.
O–H
.
1634–1625
-
,
2 ,
[Dianov, et al., 2005].
logfO2(IW) = -3.9
,
O-H
,
.
4135 -1
logfO2(IW)= -2.2 -3.9,
, 2,
[Luth, et al., 1987].
-1
2000–3500
,
NH3 [Touray, et
[Roskosz, et al., 2006],
.
3287 -1
fO2
,
NH3
,
fO2
NH4+.
3287 -1
3315 -1
11
15
485
logfO2(IW)=-2.4 (L6)
90
.
20
,
25
1033
C-H (CH4)
H2O
1620
2912
3570
N2
788
3287
-
OH +H2O
5
3184
10
2331
+
N-H (NH3,NH4 )
0
4000
3000
2000
,c
1000
0
-1
. 1.
,
(Fe)
4
1550 ,
(OH, H2,
H2O, NH3 NH4+, N2 )
N–N
.
-1
.
2331
-1
, N2 ,
2331
N2
.
N2
N2
1300- 1700
C–H
2914–2915 -1
.
3
[Roskosz et al., 2006].
.
logfO2(IW)= -2.2
[Kadik et al., 2004]
.
-2.4.
.
CH4
.
,
,
.
1030–1120 -1, 784-798 -1, 490–483 -1 80–93
,
900–1200 -1, 800–850 -1 500–600 -1 [Neuvillie, Mysen,
1030–1120 -1,
. 4,
0–1200
-1
1996; Mysen, 1998].
FeO
.
-1
,
1030–1120
-1
N[Schrimpf and Frischat, 1983]
CaO–Na2O–SiO2. C
,
,
Si3N4 [Wada, et al., 1981; Muraki,
Si,
Si3N4
et al., 1977],
.
N–
1000
-1
(
L5, L6, L7, L8
. 2.
3000
-1
)
-
N–H, OH .
.
12
4000,
1630–1615
-1
600
logfO2(IW)=-3.1 (L7)
500
+
N-H (NH3, NH4 )
-1
3375
+
NH4
3285
400
,
H2O
-
300
1440
1615
OH +H2O
3540
1790
200
100
0
4000
3500
3000
2500
,
. 2.
2000
1500
1000
-1
,
(Fe)
4
1550 ,
(OH,
H2, H2O, NH3 NH4+, N2 )
-1
-1
.
3518
, 3538
3543 -1
logfO2(IW) = -2.2, logfO2(IW) = -2.4
logfO2 = -3.1
–
OH
[Stolper, 1982; Newman et al., 1986; Kadik et al., 2004].
2
fO2
logfO2= -3.9
.
1626–1632 -1
,
,
[Dianov
et
al.,
2005].
2
N-H
.
logfO2(IW) = -2.2
3318 -1
-1
-1
3194
,
logfO2(IW) = -2.4 -3.1
3373 3287
,
logfO2(IW) = -2.2
logfO2= -3.1
3374 3306 -1 1430-1440 -1
,
,
N–H
[Keller and
Halford, 1949; France et al., 1984; Harlov et al., 2001; Busigny et al., 2004].
3300 -1
Si3N4
CaO–Na2O–SiO2
1400 oC
[Mulfinger, 1966].
,
NH4,
,
[NH4]Al2[AlSi3O10] (OH)2,
-1
2800-3300
,
NH4+
[Harlov et al., 2001].
3300 -1, 3175 -1, 3035 cm-1 2825 -1.
3145 -1,
3040 -1, 1680 -1 1430 -1[Nakamoto, 1978;].
,
N–H
–
NH3.
NH4+,
13
fO2
,
N
N–H (NH3, NH4+).
N–Si
N2
H
,
,
[Mulfinger, 1966].
-
2
.
2.
,
fO2
2
.
,
,
2007-2008
2009
[Galimov, 2005].
,
H–N–O
fO2,
.
C–N–H–O
,
.
,
.
.
,
,
.
,
,
,
Fe
,
.
,
,
,–
,
.
14
,
N
.
[Miyazaki et al., 2004; Libourel, et al.,
2003; Roskosz et al., 2006; Kadik, Litvin, 2007; 2008]
fO2
.
,
fO2
,
fO2
FMQ,
N2
ppm.
fO2
IW
ppm.
,
fO2
(
).
.
,
–
.
.
,
–
.
,
,
,
,
. [Javoy, 1997; Tolstikhin, Marty, 1998; Marty,
Dauphas, 2003].
N-H
,
logfO2(IW)=-(3-4).
2
.%
,
fO2
IW.
n× 10-4 %
. [Miyazaki et al., 2004; Libourel et al., 2003].
,
fO2
N2
,
4,
2
[Galimov, 2005]
,
,
2
2, NH3.
1.
.,
.,
., 1992.
.
2.
,
.,
.,
,
.,
9, .1231-1240.
.,
.,
2006
.
,
3.
1, . 38-53.
., 2008
:
.
.
.:
.:
», 2008. 367-
«
379.
4.
., 1981.
.
,
8, .
1234-1242.
15
5.
. 1962.
.
.
.:
.
.
. 212–
215.
6. Bohlen S.R., Boettcher A.L., 1982. The quartz-coesite transformation: a precise
determination and the effects of other components. Jour. of Geophys. Res., 87(B8), 7073-7078.
7. Busigny, V., Cartigny, P., Philippot, P. and Javoy, M., 2004. Quantitative analysis of
ammonium in biotite using infrared spectroscopy. Amer. Miner., 89, 1625-1630.
8. Dianov, E. M., Koltashev V.V., Klyamkin S.N., Malosiev A.R., Medvedkov O.I.,
Plotnichenko, V.G., Rybaltovskii, A.A., Rybaltovskii, A.O., Sokolov, V.O. & Vasiliev S.A., 2005.
Hydrogen diffusion and ortho-para conversion in absorption and Raman spectra of
germanosilicate optical fibers hydrogen-loaded at 150-170MPa. Jour. of Non-Crystalline Solids,
351 (49-51), 3677–3684.
9. Drake M.J., Newsom H.E., Capobianco C.J., 1989. V, Cr, and Mn in the Earth,
Moon EPB and SPB and the origin of the Moon: experimental studies. Geochim. Cosmochim.
Acta, 53, 2101-2111.
10. France et al., 1984 France, P.W., Carter, S.F., Williams, J.R., 1984. NH+4 absorption
in fluoride glass infrared fibers. Journal of the American Ceramic Society, 67 (11), p. 243-C244.
11. Galimov, E.M., 2005. Redox Evolution of the Earth Caused by a Multistage
Formation of Its Core. Earth and Planetary Science Letters, 233, 263-276.
12. Harlov, D.E., Andrut, M., Melzer, S., 2001. Characterisation of NH4-phlogopite
(NH4) (Mg3) [AlSi3O10] (OH)2 and ND4- phlogopite (ND4) (Mg3) [AlSi3O10] (OD)2 using IR
spectroscopy and Rietveld refinement of XRD spectra. Phys. Chem. Miner., 28 (2), 77-78.
13. Javoy, M., 1997. The major volatile elements of the Earth: origin, behavior, and fate.
Geophys. Res. Lett., 24 (2), 177-180.
14. Kadik, A.A., Pineau, F., Litvin, Yu.A., Jendrzejewski, N., Martinez, I., Javoy, M.,
2004. Formation of carbon and hydrogen species in magmas at low oxygen fugacity during fluidabsent melting of carbon-bearing mantle. Jour. Petrol., 45 (7), 1297-1310.
15. Kadik, A.A. and Litvin Yu.A., 2007. Magmatic transport of carbon, hydrogen and
nytrogen constituents from reduced planetary interiors. Lunar Planet. Sci. XXXVIII. LPI
Contrib. No. 1338, 1020
16. Kadik A.A. and Litvin Yu.A., 2008 The role of the hydrogen and oxygen fugacity on
the incorporation of nitrogen in reduced magmas of the early Earth’s mantle. LPS XXXIX. 2008.
1037
17. Keller, W.E. and Halford, R.S., 1949. Motions of Molecules in condensed systems.
IV. The infra-Red Spectra for Ammonium Nitrate and Thallous Nitrate. Jour. Chem.Phys., 17
(1), 26-30.
18. Libourel G., Marty B., Humbert F., 2003. Nitrogen solubility in basaltic melt. Part I.
Effect of oxygen fugacity. Geochim. Cosmochim. Acta, 67, 4123-4135.
19. Luth, R. W., Mysen, B.O. & Virgo, D., 1987. Raman Spectroscopic Study of the
Solubility Behavior of H2 in the System Na2O–Al2 O3–SiO2–H2. Amer. Miner., 72, 481-486.
20. Marty, B. and Dauphas, N., 2003. The nitrogen record of crust-mantle interaction
and mantle convection from Archean to Present. Earth Planet. Sci. Lett., 206, 397-410.
21. Miyazaki, A. Hiyagon, H. Sugiura, N., Hirose, K. & Takahashi, E., 2004. Solubilities
of nitrogen and noble gases in silicate melts under various oxygen fugacities: Implications for
the origin and degassing history of nitrogen and noble gases in the Earth. Geochim. Cosmochim.
Acta, 68, 387-401.
22. Mulfinger, H.O., 1966. Physical and chemical solubility of nitrogen in lass melts.
Jour. Amer. Ceramic Soc., 49, 462-467.
23. Muraki, N., Katagiri, G., Sergo, V., Pezzotti, G. & Nishida T., 1977. Mapping of
residual stresses around an indentation in -Si3N4 using Raman spectroscopy. Jour. Mater. Sci.,
32, 5419-5423.
16
24. Mysen, B.O., 1998. Transport and configurational properties of silicate melts:
Relationship to melt structure at magmatic temperatures. Phys. Earth Planet. Inter., 107, 23-32.
25. Mysen, B.O. and Virgo, D., 1986. Volatiles in Silicate Melts at High Pressure and
Temperature: 2. Water in Melts along the Join NaAlO2–SiO2 and a Comparison of Solubility
Mechanisms of Water and Auorine. Chem. Geol., 57, 333-358.
26. Nakamoto, K., 1978. Infrared and Raman spectra of inorganic and coordination
compounds (3rd ed.). New York: John Wiley and Sons.
27. Neuville, D.R. and Mysen, B.O., 1996. Role of aluminium in silicate network: In situ,
high-temperature study of glasses and melts on the join SiO2-NaAlO2. Geochim.Cosmochim.
Acta, 60, 1727-1737.
28. Newman, S, Stolper, E.M and Epstein, S., 1986. Measurement of water in rhyolitic
glasses: Calibration of an infrared spectroscopic technique. Amer.Mineral., 71, 1527-1541
29. Roskosz M., Mysen B.O., Cody G.D., 2006. Dual speciation of nitrogen in silicate
melts at high pressure and temperature: An experimental study. Geochim. Cosmochim. Acta, 70,
2902-2918.
30. Schrimpf, C., Frischat, G.H., 1983. Property-composition relations of N2-containing
Na2O-CaO-SiO2 glasses. Journal of Non-Crystalline Solids, 56, 153-160.
31. Stolper, E., 1982. The speciation of water in silicate melts. Geochim. Cosmochim.
Acta, 46, 2609-2620.
32. Tolstikhin, I.N. and Marty, B., 1998. The evolution of terrestrial volatiles: a view
from helium, neon, argon and nitrogen isotope modeling. Chemical Geology, 147, 27-52.
33. Wada, H. and Pehlke, R., 1981. Nitrogen solubility in liquid Fe-V and Fe-Cr-Ni-V
alloys. Metal. Trans., 12B, 333-339.
17
:
:
.
,
.
,
.
.
,
.
,
.
,
.
,
.
.
,
,
,
.
-
,
–
,
.
,
,
,
,
,
,
,
.
,
,
,
,
,
.
,
,
,
,
,
,
.
(
,
),
,
.
,
–
.
,
,
,
,
,
,
.
18
»
18
2006-2008
.
.
,
,
.
(
)
.
,
,
,
,
,
,
.
.
1.
,
,
Miyama, 1999; Sano
(Sano,
,
., 2000;
Velikhov, 1959).
(Hawley, Balbus, 1991).
,
.
,
(
,
., 1996; Bisnovatyi-Kogan, Lovelace, 2001; Armitage
. 2001).
,
,
1979; Brandenburg
2
,
c s2 )
( B /4
.
,
,
(
),
,
),
.
,
(
)
z)
(
,
.
,
,
,
,
,
.
,
,
,
,
(
)
,
,
,
(
, 1987).
,
.
19
(
, 2001, 2004; 2005
2006; 2007, 2008; Marov, Kolesnichenko, 2002; 2006)
,
,
,
-
,
,
,
,
,
.
,
,
,
,
,
,
.
,
,
,
,
2009
.
.
,
,
:
1.
,
;
2.
,
,
(Shakura, Syunyaev, 1973);
3.
,
,
,
;
4.
(
)
,
,
,
,
,
(
,
)
.
,
.
II.
-
20
,
(r
1
.).
., 2008).
(
2009 .
.
1.
.
(r)
62 Gk
(
1 khd
2
K
k , hd ,
k
g
d
)
Vd
1
ci
,
,
g
, ci , Vd :
2
g
g
k 2 (1
2
)Vd
2
0.
d
d
–
2 /
d
r = 1
.
K < 0,
,
–
, hd –
, ci -
–
, Vd –
d
g
.
(
., 2008)
,
k
= 0,
.
d
,
1,
d
-
d
~ 20
.
kcr
cr
*
103
0.
0;
k
~
k,
~
d 2hd d
min, ( ~
3M S / 4 r 3 ),
t
k
d
:
(
.
max=
d
2.2
4.4hd * ,
).
,
~4
,
.
.
,
~
,
1.
d
,
.
,
d
~ 2500
,
cr
k
,
cr
.
/ g ~ 100 .
,
( ~ 0.2 - 0.7
0
).
R1
R0
2
3
R0
mc G
mc 2 G 2
2
,
1
m
3
3
R0 6
.
tc
1/
max
,
,
,
~
d
2.2
*
21
= 0.5
1.
r =1
d
8
. hd=2.4 10
2
= 150
,
.
1.
d(
)
mñ ( )
1
3.8 1020
2
3.8 1020
4
3.2 1020
10
1.6 1020
20
6.8 1019
tc ( )
R0
190
3.35hd
0.2
7.0 10 5
12.5
61
3.35hd
16
3.05hd
1.9
2.15hd
0.3
1.4hd
R1/R0
3
)
1
0.2
7.0 10
15.4
0.18
3.5 10
15.4
5
0.12
1.7 10
34.7
5
0.08
8.3 10
78
4
4
2.
.
,
,
A c i2
V
/ VK (
,
).
dr
dt
Vr
mc
g
,
r / 1 à.å.
g1
r
B
1 à.å.
d =10
= =2500
Vr
2
1
,
B
0.2
g1
m1c / 3
2/3
c
( V )2
.
ci1
,
T
6.7 (r / 1à.å.)
0.75
. q =300 K
T1 r / 1
= 2.4
ñì ñ 1 .
4 r1
1 (r / r1 ) 0.25 ,
B
0.1 . . r 1.2 10 5 ëåò .
r
p q/2
1,
c
p
1
d
1 . .
0.5 . .
4.5 10 4 ëåò ,
r
105
,
,
B,
.
3.
,
ñ,
,
.
Vr B
,
,
k1 mc2 / 3
,
ñ
d
( k1
1/ 3
c
Vr
,
1 ).
.
R1
0.5 1.85.
=10
(
ñ,
.
r,
mc
. 1)
ñ
=
d
c
2 10
2
1
ëåò ,
2-3
r.
,
.
1 2
dmc / dt
,
190
r.
,
,
c
,
r
103
,
4.5 10 4 ëåò
Vr
,
22
mc /
12
Vr .
,
.
,
,
.
4.
26
Al,
.
,
(
2.8 10
., 2008).
1.3
.%,
5
Al
26
10
-
4
27
Al = 5 10
5
6 10
( AIs)
1
1
) = 4.1 10
=9.63 10
4
1
t = 6 105
: Q = 1.3 104
,
Wtur = ( V)2 = 3.9
r = 1 . .,
,
1
.
100–150
Al
5
1
1
1
.
7
1
(1.3
1
, Q/Wtur ~ 10 4..
.
,
26
-
~ 10
Al
3
3
,
.
III.
(
)
,
,
,
.
,
.
2009 .
1.
«Spitzer»),
.
(
,
~ 10-30
(100-300
,
,
~ 8-10
.
.
),
.
,
«snow line»
(
),
.
,
,
,
.
2.
,
206
/
182
W
CAIs
95%)
, Allende NWA 2364 (
4568.55 0.90
.
Pb/204Pb, 26Al/26Mg,
CV3
182
Hf
.
(
)
23
.
(
4564.91
.
.
3,64 1.52
95%-
)
,
.
.
(
)
(Mittlefehldt, 2003; Klein et al., 2008 ,b; Spivak-Birndorf et al., 2009).
3.
,
,
,
1-2
.
(Burkhardt et al., 2008).
,
53
,
Mn/53Cr
6(Orgueil (CI1), Dar al Gani 749 (CO3.1), Lancé (CO3.4), Ningqiang (CK3), Vigarano (CV3),
.
.
Allende (CV3))
4,568.0-0.91+1.17
1-1.5
.
.
HED (howardite-eucrite-diogenite),
(
),
(
)
).
,
,
,
4
,
HED (Takeda et al., 1976;1979;1983; Binzel and Xu, 1993; Gaffey, 1997;
Mittlefehldt et al., 1998 Drake, 1979; 2001).
4.
,
26
–
0.72
,
.
26
)
60
(0.5-2) 10-6
Fe
Al,
26
,
~5
2-4
.
5 10-5
.% (
,
,
Al
.%
1.2
26
.
.
).
,
Mg (Bizzarro et al., 2005).
90%
.
(
Al,
,
1-2
.
.
26
.
Al
13
100-300
4% ,
.
CAIs
,
,
,
2
.
1.5-
.
IV.
,
,
.
,
~1
,
.
10
0.1-1
10 ,
.
(
15
- 10
24
,
19
(~ 10 - 10
,
.)
)
~ 0,1
(
., 2008;
,
, 2009).
,
«
»
.
,
,
.
-
,
1981; Bird, 1994;
,
(
, 1965; Hockney R. W. et al.,
., 2009).
,
,
,
, 1994;
,
.
,
,
,
V
.
,
.
t,
.
,
,
.
,
,
,
.
»
,
,
.
,
.
.
DSMC
(Bird, 1994)
m
d.
,
:
mi
di.
:
1.
m = 6.0 1011
d = 2750 ,
2.5 10-13
-3
,
,
n=
cd = 300
(
).
)
.
0,55
,
0,85
,
.
:
,
.
.
25
:
150
,
(
250
)
.
,
(«
»)
.
,
,
,
.
2.
.
68000
34000
= 6.0 · 1014 ,
«
-15
»
d = 5950 ,
d = 20
-3
n0 = 1.2 · 10
,
m
.
.
:
,
.
x(
)
500
/c.
1020
.
.
,
(
500
)
,
,
(
).
300
.
,
t = 0.6 ·105 c, t = 0.8 · 105 c, t = 1,2 · 105 c
t = 2.0 · 105 c.
,
2
,
,
,
:
t = 0.8 · 105 c
t = 1.2 · 105 c
t = 1.6 · 105 c
t = 2.0 · 105 c
,
,
.
,
,
10
.
3.
(
,
,
1976).
»
d = 5950
,
108 .
,
«
n0 = 2,5 · 10-14
-3
,
,
,
R=4·
m = 6.0 · 1014
wd = 2.75 · 10-6 s-1,
n
r.
,
,
.
,
,
«
26
,
wd .
,
»
.
,
,
.
.
.
, 1994.
.
.
.
”. 1998. 336 .
.
,
//
.
. 2006. .40.
.,
.:
.
.:
.
.:
, 1965.
.
.
:
1. . 1-62.
.
//
.
. 2008. .42.
3. C.1–
50.
.
.
//
”. .:
.
. “
, 2003. . 123-162.
.
//
.
. 2004. .38.
2. . 144-170.
.,
.
.
.
.
,
, 2009,
. 632.
.,
.,
.,
Chernov.
//
. URSS, 2008, .223-273.
.,
.
.
.,
Dorofeeva, I.N. Ziglina, A.A.,
:
/
.
.,
.,
, 2009 ., . 21,
.
9,
. 34 — 42.
.,
.
,
,1976.
.,
.
. .:
. 1979. 511 .
Armitage P.J., Livio M., Pringle J.E. Episodic accretion inmagnetically layered
protoplanetary disks// Mon. Notic. Roy. Fstron. SOC. 2001. v. 324. p. 705-711.
Binzel R. P., Xu S. Chips off of asteroid 4 Vesta: Evidence for the parent body of basaltic
achondrite meteorites // Science. 1993. V. 260. P. 186–191.
Bird G.A. Molecular gas dynamics and the direct simulation of gas flows. Claredon Press,
1994.
Bizzarro M., Baker J.A., Haack H., Lundgaard K.L. Rapid timescales for accretion and
melting of differentiated planetesimals inferred from 26Al-26Mg chronometry // The
Astrophysical Journal. 2005. V. 632. L41–L44.
Bisnovaty-Kogan G.S., Lovelace R.V.E. Advective accretion disks and related problems
including magnetic fields// New astron. Rev. 2001. V. 45. P.663-742.
Brandenburg A., Nordlund A., Stein R.F., Torkelsson U. The disk accretion rate for
dynamo-generated turbulence// Astrophys. J. 1996. V. 458. P. 145-148.
.:
27
Burkhardt C., Kleine T., et al. Hf - W mineral isochron for Ca,Al-rich inclusions: Age of
the solar system and the timing of core formation in planetesimals // Geochim.
Cosmochim..Acta. 2008. V. 72. Iss. 24. P. 6177-6197.
Drake M. J. Geochemical evolution of the eucrite parent body: Possible nature and
evolution of asteroid 4 Vesta. In Asteroids (T. Gehrels, ed.). Univ. of Arizona, Tucson. 1979. P.
765–782.
Drake M. J. The eucrite Vesta story // Meteoritics & Planet. Sci. 2001. V. 36. P. 501–
513.
Gaffey M. J. Surface lithologic heterogeneity of asteroid 4 Vesta // Icarus. 1997. V.127.
P. 130–157.
.
//
. 1987. . 151. . 329Kleine T., Bourdon B., Burkhardt C., Irving A. J. Hf–W chronometry of angrites: constraints
on the absolute age of CAIs and planetesimals accretion timescales // Lunar Planet. Sci. Conf.
XXXIX. 2008. 2367pdf. (a)
Kleine T., Touboul M. et al. Hf–W thermochronometry: closure temperature and
constraints on the accretion and cooling history of the H chondrite parent body // Earth Planet.
Sci. Lett. 2008. V. 270. P. 106–118. (b)
Hawley J.F., Balbus S.A. A powerful local shear instability in weakly magnetized disks.
II. Nonlinear evolution// Astrophys. J. 1991. V. 376. P. 223-233.
Hockney R. W. Eastwood J. W. Computer Simulation Using Particles. McGraw-Hill, New
York, 1981 ( .
.,
.
. .,
, 1987).
Marov M.Ya., Kolesnichenko A.V. Mechanics of turbulence of multicomponent gases.
Dordrecht, Boston, London.: Kluwer Academic Publishers. 2002. 375 p.
Marov M.Ya., Kolesnichenko A.V. Chaotic and ordered structures in the developed
turbulence. In: “Astrophysical disks: Collective and stochastic phenomena”(eds.: A.M. Fridman,
M.Ya. Marov,). Springer. Printed in the Netherlands. 2006. P. 23-54.
Mittlefehldt D. W., McCoy T. J., Goodrich C. A., Kracher A. Non-chondritic meteorites
from asteroidal bodies. In Planetary Materials (J. J. Papike, ed.). 1998. P. 4-1 to 4-195.
Mittlefehldt, D. W. Achondrites //Treatise on Geochemistry. 2003. V. 1, ed. A. W. Davis
(Oxford: Elsevier-Pergamon). 291-324.
Sano T., Miyama S.M. Magnetorotational instability in Protoplanetary disks. I. On the
global stability of weakly ionized disks with ohmic dissipation//Astrophys. J. 1999. V. 515. P.
776-786.
Sano T., Miyama S.M., Umebayashi T., Nakano T. Magnetorotational instability in
Protoplanetary disks. II. Ionization state and unstable regions//Astrophys. J. 2000. V. 543. P.
486-501.
Shakura N.I., Sunyaev R.A. Black holes in binary systems. Observational appearance//
Astron. Astrophys. 1973. V. 24. P. 337-355.
Spivak-Birndorf L., Wadhwa M., Janney P. 26Al-26Mg systematics in D’Orbigny and
Sahara 99555 angrites: Implications for high-resolution chronology using extinct chronometers //
Geochim. Cosmochim. Acta. 2009. V. 73. Iss. 17. P. 5202-5211.
Takeda H., Miyamoto M., Ishii T., Reid A. M. Characterization of crust formation on a
parent body of achondrites and the moon by pyroxene crystallography and chemistry // Proc.
Lunar Sci. Conf. VII. 1976. P. 3535–3548.
Takeda H. A layered-crust model of a howardite parent body // Icarus. 1979. V. 40. P.
455–470.
Takeda H., Mori H. et al. Mineralogical comparison of Antarctic and non-Antarctic HED
(howardites-eucrites-diogenites) achondrites // Mem. Natl. Inst. Polar Res., Spec. 1983. Issue.
30. P. 181–205.
Velikhov E.P. Stability of an ideally conducting liquid flowing between cylinders rotating
in a magnetic fluid//Sov. Phys. JETP.1959. V.9.P. 995-998.
28
:
:
:
.
,
.
.
,
.
.
,
.
,
.
.
1.
,
,
.
"
17" [Langseth et al., 1976]
,
,
500
[Nakamura, 1983]
.
~1
.
,
-15
[Ringwood, Essene, 1970].
,
500
(
[Wieczorek et al., 2006].
),
–
(
1000
.
[Lognonné, 2005].
»
500
),
1000-1500
,
(Q = 4000-7000
P-, S) [Nakamura, Koyama, 1982]
[Latham et al., 1972]
,
1000
et al., 1981; Nakamura, 1983].
,
)
Gagnepain-Beyneix et al., 2006],
20-25
«
,
.
[Goins
([Khan et al., 2000, 2007],
([Lognonné, 2005; Lognonné et al., 2003;
,
)
P- S
,
»,
.
,
[Goins et al., 1981;
Nakamura, 1983].
.
[
,
, 1998; Kuskov, 1995, 1997],
,
.
29
,
,
.
,
,
(
)
.
.
,
: (1)
)
; (2)
[
,
,
2009].
2.
2.1.
(
,
.)
,
.
,
THERMOSEISM
MgO-Al2O3-SiO2 (NaTiCFMAS)
1997].
.
Na2O-TiO2 aO-FeO[Kuskov, 1995,
2.2.
(
)
[Kuskov et al., 2006]:
P (V , T )
Pp (V )
V
ET (V , T ) ,
(1)
2.3.
( )
(
),
.
,
,
,
–
[Kuskov, 1995, 1997].
2.4.
,
30
,
a priori
,
«
»
»
.
(
(VP)
(VS)
[Kuskov et al., 2006].
.
)
2.5.
,
,
-
,
;
-
.
P-
S
Vanh(P, T, X),
,
VP2
KS
VS2
G
4 / 3G
:
,
(2)
,
(3)
(KS)
( )
(G)
(1).
.
-
.
:
P=P {1 [(R H)/R]2},
Po = 47.1
-
(4)
, R = 1738
,H-
.
2.6.
,
,
QS
QS(P,T, ) = AT
T, , g -
QP.
QS
:
exp( gTm( )/T).
(5)
,
,
500
:
T
= 0.5,
= 0.2, g = 30.
1 Hz.
[Hirschmann, 2000].
[Ringwood, Essene, 1970]
.
2.7.
.
S-
P-
,
,
,
[Karato,
1993]:
Vanel(P, T, X, ) =Vanh(P, T, X)[1 – 1/2Q(P,T, )tan(
/2)],
(6)
31
V
Vanel(P, T,
P,S.
(
,
)
,
),
.
.
,
.
3.
8-
(1969-1977
.),
,
-12, 14, 15, 16",
[Goins et al., 1981; Nakamura, 1983].
[Khan et al., 2000, 2006a,b, 2007]
[Lognonné, 2005;
Lognonné et al., 2003; Gagnepain-Beyneix et al., 2006]
PS
.
( . 1)
.
( ~50-300 , ~3-15
)
.
-1
VP, km s
V , k m s -1
S
7,6
7,8
8,0
8,2
4 ,0
4 ,2
4 ,4
4 ,6
(B )
4
200
200
2
400
H, km
H, km
400
3
600
600
800
4
800
2
1000
1000
1
1 - Gagnepain-Beyneix et al. (2006)
2 - Khan et al. (2007)
3 - Kuskov et al. (2002)
4 - Lognonne (2005)
. 1.
1
2
3
4
-
3
1
G a g n e p a in -B e y n e ix e t a l. (2 0 0 6 )
K h a n e t a l. (2 0 0 0 )
K u s k o v e t a l. (2 0 0 2 )
L o g n o n n e (2 0 0 5 )
( )
( )
. 1 - Gagnepain-Beyneix et al. (2006), 2 - Khan et al. (2000), 3 – Kuskov et
al. (2002), 4 - Lognonné (2005).
[Lognonné, 2005; Gagnepain-Beyneix et
al., 2006]
.
4.
)
32
.
,
.
FeO [Taylor, et al. 2006;
-
(
)
, 2004; Kuskov, Kronrod, 1998; Lognonné et al., 2003].
[Kuskov, Kronrod, 1998]
+
),
. 1).
(
aO
+
FeO
Al2O3
+
1.
(
(Ol-Px)
[Kuskov, Kronrod,
1998]
32.0
11.6
2.25
1.8
52.0
0.05
0.3
83.0
.%)
MgO
FeO
Al2O3
CaO
SiO2
Na2O
TiO2
MG#
(
,
VP,
VS,
.%)
200
3
/
(10.2
[McDonough,
1990]
37.58
8.48
4.50
3.64
45.25
0.34
0.21
88.8
/ 680oC)
77.0
9.0
13.0
0.4
0.6
20.6
31.1
44.7
0.3
3.3
3.321
7.711
4.449
3.307
8.005
4.555
5.
( ,
. 1.
P-
S)
S
(Kuskov et al., 2006).
,
,
(
,
. 2-3)
,
-
,
,
(
),
.
,
. 2-3
,
.
S
.
5.1.
. 2
2
,
TP
–
TS ,
(Ol-Px)
(Pyr).
[Goins et al., 1981;
33
Nakamura, 1983]
~300
–
,
.
.
,
1982].
,
300-500
TP TS
.
TP TS,
,
o
(~400 C)
270 .
,
(
[Kuskov, 1997; Kuskov, Kronrod, 1998]),
,
. 2
2
,
TP TS ,
[Goins et al., 1981; Nakamura, 1983]
200
,
[Nakamura, Koyama,
,
[Goins et al., 1981; Nakamura, 1983]
,
. 3.
.
TS, oC
TP, oC
400
600
800
1000
1200
1400
400
600
800
1000
(A)
100
(B)
lidu
H, km
s
H, km
So
s
lidu
So
100
200
300
400
Pyroxenite
200
300
Pyroxenite
400
Nakamura (1983)
Goins et al. (1981)
500
Nakamura (1983)
Goins et al. (1981)
500
o
TP, oC
1000
1200
1400
1600
300
1000
1200
1400
(D)
200
300
400
Pyrolite
Nakamura (1983)
Goins et al. (1981)
. 2.
800
100
200
500
600
1800
H, km
H, km
T S, C
(C)
100
400
1200
500
Pyrolite
Nakamura (1983)
Goins et al. (1981)
(TP, TS)
,
. 1) [Goins et al., 1981; Nakamura, 1983]
. 2.
Ringwood, Essene (1970)
. ,b–
, c, d –
.
(
(
) –
Hirschmann (2000)
50-250
(
),
[Lognonné, 2005; Gagnepain-Beyneix et al., 2006]
Ol-Px
,
,
: (100 ) = 590 100 , S(100 ) = 520
. 3).
,
300-500
,
[Lognonné, 2005; Gagnepain-Beyneix et al., 2006]
Ol-Px
,
34
120
(
~350
S
(
. 3),
. 3).
o
o
T P, C
500
600
700
800
900
400
800
1000
1200
1400
1600
Sol
id
(A)
100
600
us
400
T S, C
100
200
200
300
300
Pyroxenite
H, km
400
Gagnepain-Beyneix
et al. (2006)
Lognonne (2005)
Khan et al. (2000)
500
Gagnepain-Beyneix
et al. (2006)
Lognonne (2005)
Khan et al. (2000)
Khan et al. (2000, 2007)
400
500
(B)
TS, oC
o
TP, C
600
800
1000
1200
600
(C)
100
200
300
300
H, km
H, km
Pyrolite
Gagnepain-Beyneix et al. (2006)
Lognonne (2005)
Khan et al. (2000)
500
. 3.
1000
1200
1400
Pyrolite
400
500
1600
Gagnepain-Beyneix
et al. (2006)
Lognonne (2005)
Khan et al. (2000)
Khan et al. (2000, 2007)
(D)
(TP, TS)
,
[Lognonné, 2005; Gagnepain-Beyneix et al., 2006; Khan et al., 2000,
.
.
V (50-500 ) = 8
(Khan et al., 2000),
VS (50-500 ) = 4
(Khan et al., 2000) VS (50(Khan et al., 2000, 2007).
(
)–
Ringwood, Essene
Hirschmann (2000)
. ,b–
.
2007]
1.
S
500 ) = 4.4
(1970)
, c, d –
Gagnepain-Beyneix et al. (2006)
. 1),
~240
S
(
(
800
100
200
400
,
1400
Sol
idu
s
H, km
Pyroxenite
(
. 3).
, ),
(
).
V
.
Lognonné (2005)
S
(
,
. 3
).
,
,
500-
600 .
920
,
100
= 1100-1250 [Lognonné, 2005; Gagnepain-Beyneix et al., 2006]
[Gagnepain-Beyneix et al., 2006] (
,
. 3),
.
,
.
S
=
,
35
.
,
.
6.
: (1)
,
; (2)
: (100
(
) ~400-500 ,
(300
)
) ~600-750 ,
240-270
(500
) ~750-1000 ; (3)
300
; (4)
.
2009 .:
1.
.,
.,
:
.,
.
,
/
.:
2.
.,
3.
.,
, 2009. 576 .
.,
//
.
.,
.2009,
//
.,
.
12.
. 2009.
Inter. Sci. Symposium The Moon, moons and planets, August, Kazan;
Int. Conf. Geodynamical Phenomena, Suzdal;
Goldschmidt Conf., Davos;
Vernadsky-Brown Microsimposium;
.
,
);
.
.
,
;
,
,X
.
.
.
.
9. . 25-40.
(
,
,
.
.
//
.,
. 1998. 6. . 615-633.
.,
.
//
. 2004.
7. . 691-706.
.
//
. 2009. 9. . 25-40.
Gagnepain-Beyneix J., Lognonné P., Chenet H., Lombardi D., Spohn T. A seismic model
of the lunar mantle and constraints on temperature and mineralogy // Phys. Earth Planet. Inter.
2006. V. 159. P. 140-166.
Goins N.R., Dainty A.M., Toksoz M.N. Lunar seismology: The internal structure of the
Moon // J. Geophys. Res. 1981. V. 86. P. 5061-5074.
Hirschmann M.M. Mantle solidus: Experimental constrain and the effects of peridotit
composition // Geochemistry Geophysics Geosystem. 2000. V.1. P. 1525-2027, doi.
2000GC000070.
36
Karato S. Importance of anelasticity in the interpretation of seismic tomography //
Geophys. Res. Lett. 1993. V. 20. P. 1623-1626.
Khan A., Connolly J.A.D., Maclennan J., Mosegaard K. Joint inversion of seismic and
gravity data for lunar composition and thermal state // Geophys. J. Int. 2007. V. 168. P. 243–258.
Khan A., Mosegaard K., Rasmussen K.L. A new seismic velocity model for the Moon
from a Monte Carlo inversion of the Apollo lunar seismic data // Geophys. Res. Lett. 2000. V.
27. P. 1591-1594.
Kuskov O.L. Constitution of the Moon: 3. Composition of middle mantle from seismic
data // Phys. Earth Planet. Inter. 1995. V. 90. P. 55-74.
Kuskov O.L. Constitution of the Moon: 4. Composition of the mantle from seismic data
// Phys. Earth Planet.Inter. 1997. V. 102. P. 239-257.
Kuskov O.L., Kronrod V.A. Constitution of the Moon: 5. Constraints on composition,
density, temperature, and radius of a core // Phys. Earth Planet. Inter. 1998. V. 107. P. 285- 306.
Kuskov O.L., Kronrod V.A., Annersten H. Inferring upper-mantle temperatures from
seismic and geochemical constraints: Implications for Kaapvaal craton // Earth Planet. Sci. Lett.
2006. V. 244. P. 133-154.
Kuskov O.L., Kronrod V.A., Hood L.L. Geochemical constraints on the seismic properties
of the lunar mantle // Phys. Earth Planet. Inter. 2002. V. 134. P. 175-189.
Langseth M.G., Keihm S.J., Peters K. Revised lunar heat flow values // Proc. Lunar
Planet. Sci. Conf. 7th. 1976. pp. 3143-3171
Latham G., Ewing M. Dorman J., Lammlein D., Press F., Toksoz,N., Sutton G.,
Duennebier F., Nakamur Y. Moonquakes and lunar tectonism // The Moon.1972. 4. P. 373-382.
Lognonné P. Planetary seismology // Annu. Rev. Earth Planet. Sci. 2005. V. 33. P. 571–
604.
Lognonné P., Gagnepain-Beyneix J., Chenet H. A new seismic model of the Moon:
implications for structure, thermal evolution and formation of the Moon//Earth Planet. Sci. Lett.
2003. V.211. P.27-44.
Nakamura Y. Seismic velocity structure of the lunar mantle//J. Geophys. Res. 1983. V.
88. P. 677-686.
Nakamura Y., Koyama J. Seismic Q of the lunar upper mantle // J. Geophys. Res. 1982.
V. 87. P. 4855-4861.
Ringwood A.E., Essene E. Petrogenesis of Apollo 11 basalts, internal constitution and
origin of the Moon // Proc. Apollo 11th Lunar Sci. Conf. 1970. V. 1. P. 769-799.
Taylor S.R. , Taylor G.J., Taylor L.A. The Moon: A Taylor perspective // Geochim.
Cosmochim. Acta. 2006. V. 70. P. 5904-5918.
Wieczorek M.A., Jolliff B.L., Khan A. // Rev. Mineral. Geochem. 2006. V. 60. P. 221-364.
37
:
:
.
.
,
,
.
,
.
.
.
,
.
,
.
.
1
15 «
»
2009
.
[1, 2, 3, 4, 5]
.
,
.
,
[6].
,
.
.
[7]
.
,
,
.
[6].
,
.
0.1
.
.
,
,
.
.
1
2.
3
.
,
.
38
1.
,
[8].
.
.
,
–
.
,
.
[8].
,
,
.
.
.
1.1.
,
,
,
H3T
x, r , t .
(x,r)
1
4
x, r , t
V t
R
x
xV , rV , t
rV dxV drV d
R
xV
2
r
rV cos
V
:
,
2
(1.1)
rV sin
V
2
V
,
xV , rV ,
,
V
V.
:
2
x, r , t
x2
r r
r
x, r , t .
r
(1.2)
(1.2)
[3].
:
f x , r ,t ,
n
x ,r -
g x , r ,t ,
.
.
H3T
–
.
(
,
)
.
,
.
.
.
39
,
,
0
n
.
.
(1.1),
,
R .
,
,
,
–
(x,r) –
,
,
,
x.
«
.
»
.
V
M
.
(1.1)
.
(xc, rc),
x ,r .
Mc/2N
2 rc.
Vc/2N
2N
.
(xc, rc)
x
= 2 /2N,
.
x ,r
Mc,
x ,r
Mc
4 N
:
xc , rc Vc
4 2N
Mc
N
xc
x
2
2
c
r
2N
xc
x
2
x ,r ,
Mc
rc2
r2
2rc r cos n 1 / 2
0.5
n 1
r
(1.3)
2
0.5
2rc r cos n 1 / 2
n 1
0
x=
,
x ,r
,
»
(1.3)
xc
(-xc).
(xc, rc)
(1.3)
x ,r
x , r ,t
,
x ,r .
,
f x ,r ,t .
1.2.
,
,
,
,
.
.
,
.
,
«
»
,
.
,
.
–
[9].
40
,
.
= 1.43.
1.2.1.
(x,r),
(
. 1.1).
0.001 x 1 ( 4), 0.001
R0 = 0.001 ( 2).
.
RN = 1 ( 3)
r
1 ( 1)
.
N = 200
–
1
,
r
36
.
. 1.1.
:
Wn = 0
(Wn = 0,
p = 0)
3.
0.5
1,
2,
4 «
= 0,
»
:
1).
x = 0
0
0
0.5
1
x
. 1.1.
.
n
0,
1
n
0,
4
3
3
2).
2,
3
n
0.
2
1.
,
(1.3).
1, 4 –
–
.
3).
,
(1.3),
,
– 1, 2, 3, 4.
,
.
,
(1.3),
,
.
1.2.2.
,
.
,
,
–
2–
. 1.2.
45°
.
R0 = 0.001 RN = 1,
9, 10, 11, 12,
– 18,
,
. 1.1,
.
,
,
R = 0.7003,
r
.
1
3 - 5, 6, 7, 8.
1, 4 - 200,
9, 12 – 140,
.
1, 2, 3, 4,
6, 7 – 60.
,
.
:
2,
4,
6,
9,
10 –
41
Wn = 0,
= 0,
3, 5 –
1, 7, 12,
.
p = 0.
,
8,
Wn = 0,
11 –
:
1
1).
,
r
3
:
2,
0.5
n
0
0
0.5
n
1
3, 5,
n
0
4, 6, 9, 10.
1, 7, 12
2
1
=1
0,
8,
11
1.935548 ,
x
.
. 1.2.
2).
8,
–
.
(1.3).
3).
1,
4,
6,
7,
.
9, 11,
8,
11
,
12
(1.3).
,
.
«
»
1, 2
1, 3
2%.
,
,
,
,
,
.
2.
,
.
,
.
.
,
.
= 1,43;
; f = 6,67 10-8
= 2,35
3 1
K = 1,16·1013
1
2
(
/(
2
); R = 8,31436·107
p = K ).
(
)
.
42
3
: Mo = 1030 ;
/(
);
. 2.1.
1 (
)
,
50
1
(
2,
2
.
2.1)
40
,
30
.
. 2.2
.
20
. 2.3
3
,
10
t = 2.5
4
0
.
0
0.5
1
1.5
r
(
3
. 2.1.
4,
. 2.1)
.
,
(
. 2.4 , r
0.62).
,
,
.
65
60
55
50
45
40
35
30
25
20
15
10
5
0
0
1
2
3
4
5
6
t
. 2.2.
43
50
1
40
30
2
20
10
0
0
0.25
0.5
0.75
1
1.25
1.5
r
. 2.3.
50
40
30
20
10
1
0
3
0
0.5
1
r
. 2.4.
44
1.5
3.
,
,
,
.
:
2
c2
G
G
G
,
c
–
;
,
,
R0 –
R0,
G
–
.
,
.
,
G
R0 = 2,33·1012
.
.
.
Rn = Rn - R0
,
-
,
.
,
.
[2,3]
.
.
,
,
.
. 3.1
( G)
( Rn),
.
Md
G(r)
0,096M s , 0,25 s , 0,667 s ,
s
,
G
r,
,
~
R
.
>
R
G
n
G
n
.
,
,
[11],
.
Rn
,
,
,
G
–
.
.
Rn
,
G
.
>
,
,
d
.
Md
0.096 M S ;
d
0,667 M S ,
0,25M S ;
,
,
.
.
,
, [10, 11].
.
.
. [11]
,
,
,
.
,
[11],
,
.
,
–
.
,
45
[cm]
.
10
16
10
15
10
14
10
13
,
,
.
,
:
.
G
Rn,
3.1.
>
.
10
13
10
14
r
.
-
3.1.
[cm]
G
.
Md
( Rn(r)):
0.096 M S ;
–
–
,
d
d
–
0,25M S ;
0,667 M S ;
– Rn(r).
.
,
.
,
,
.
[7],
.
,
.
-1000
.
.
.
,
.
[2, 3]
.
,
.
.
46
1.
.
.
»,
2.
1,
25
«
1.1.2, ., 2005.
1,
,
25
«
1.1.2, ., 2006.
.
,
.
.
3.
.
.
,
»,
,
.
.
.
4.
.
.
, 2006,
70.
.
.
18
»,
., 2007.
5.
.
., «
6.
7.
8.
.
.
,
.
,
. //
», 2008, . 297-316.
.
.:
2D
. ., 1989.
.
.
1,
,
.
.(
.- . .
1.1.2,
,
.
.
.
).
., 2005.
.
.
18
«
»,
1.1.2. , ., 2008.
9.
.
.
. ., 1950.
10. Ebert R., Habilitationschrift, Un. f. Frankfurt-am-Main, 1964.
11.
.,
. //
. ., 1972, 49, 1, 157.
1,
47
:
:
.
,
.
.
.
,
.
,
.
,
.
,
.
.
1995
.
[1],
,
[2].
.
[2].
,
,
,
,
.
,
.
,
.
,
,
,
,
,
[2].
,
,
.
,
,
,
,
,
,
.
N
.
[2]:
f (r, r )
m2
a2
a
r
—
13
1
r
r
a
r
2
.
(1)
,
,
; a
,
,
—
.
r
,
13
,
;
13
[4].
(1)
.
*
48
.
*
,
,
(1),
:
3
*
a
.
m
2 11
(2)
.
–
.
[2,3].
.1
2
,
2006-2008
.
,
(
,
)
(
.1).
.2
.
.
1.
–
20 000
.
400
.
[3].
. 2.
.
20 000
.
[3].
49
,
,
,
.
,
.
.
.
2009
,
.
-100
.
.
1.
.
,
.
,
,
v
i 1
r
i 1
v
i
r
i
V
i
R
i
( Fs
v
i 1
i
:
i
Fp )
m
i
t V
t,
1
(3)
t,
r i , vi –
, R
i
, Fs Fp –
, m–
V–
,
,
t–
.
2.
,
150
,
350
.
,
.
6300
,
.
(
),
.
,
,
,
,
.
,
.
, Pm
Nm
,
M
m –
,
50
, N –
, M –
.
PV
h
R
PV ,
PV
Na 3
,
R3
, a –
R–
.
.
hR
,
.
Pm
,
Pm
0.00134
PV
PR
,
PV
3
PV
.
10
3
12
10
15
.
N aR.
,
,
(
.1).
.
, h1
: R-
0.167 R
h2
.
0.036 R –
PR .
Pm
.
500
*
.
,
[2].
,
.
1.
.
#
Pm
PR
1
2
3
4
0.01
0.01
0.0005
0.01
0.144
0.108
0.144
0.144
*
0.02
0.02
0.02
0.01
.3
(
.3
3
1
3
.1).
(
,
),
.
51
)
)
. 3.
1 (
.
)
,
5,
.
.4
.
1, 2
PR
Pm
3
.3 ,3
.3
.
,
3
1
PR ,
,
. 3 .
,
,
.
Pm .
. 3a
3
,
,
,
.
.
)
)
)
. 4.
.
PR ,
3(
2(
1 (
)
Pm ,
)
).
3.
.
.
.
.5
52
2
1
,
.
.
,
[3].
vrand
0
(
100%
.1).
,
,
.
,
,
104 .
.2
,
,
,
.2
.5.
3
.
,
.
,
,
,
.
.
)
)
. 5.
1
.
.
3
3
0
0.9
s
, vrand
0.9
0
s
.
0.55v s .
, vrand
0.7vs .
,
,
.1
[3]
4.
-100K
.
5
.
.
.
,
–
.
.
95%
.
,
.
.
,
,
53
,
.
,
,
.
N
,
N P
,
P–
.
,
.
,
.
,
,
,
,
,
,
.
,
,
,
.
.
.
, 0.5 N P ),
(
,
.
,
.
,
,
,
.
,
,
.
.
,
,
.
.
.
.
,
.
.
2
«nbody-4»,
-100K
.
,
,
5
6
.
54
2.
«nbody-4»
-100K
, ts
-15000. N
«nbody-3»
,
, P
,
tp
,
ts P N
, Np
,
Kp
N P
.
.
NBody-3 (2007
NBody-3 (2007
NBody-3 (2007
NBody-3 (2007
NBody-3 (2007
NBody-3 (2007
Nbody-4 (2009
Nbody-4 (2009
Nbody-4 (2009
Nbody-4 (2009
Nbody-4 (2009
Nbody-4 (2009
Nbody-4 (2009
Nbody-4 (2009
Nbody-4 (2009
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
0.75
0.75
0.75
0.75 , Cluster.
0.75 , Cluster.
0.75 , Cluster.
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75 , Cluster.
1.
N
ts ,
P
Kp
Np
1M
1M
1M
1M
1M
1M
1M
1M
1M
1M
1M
1M
10M
10M
1M
10
8
6.8
75
55
40
70
8.9
4.63
2.5
1.37
0.98
13.4
6,7
6,9
16
32
64
16
32
64
1
8
16
32
64
128
128
256
64
76%
47%
28%
71%
49%
33%
100%
98%
94%
87%
80%
56%
62.5K
31.3K
15.6K
62.5K
31.3K
15.6K
1000K
125K
62.5K
31.3K
15.6K
7.8K
78K
39K
15.6K
BH
.«
», (
.
2.
.
.
),
.,
3.
.
0.1600
0.2560
0.4352
1.2000
1.7600
2.5600
0.07
0.071
0.074
0.08
0.088
0.125
0.17
0.17
0.44
-15000
-15000
-15000
-15000
-15000
-15000
-100K
-100K
-100K
-100K
-100K
-100K
-100K
-100K
-100K
»
.
.: «
, 1995, .8-45.
.,
.,
»,
, 11, 2005.
. «
.
.,
,
tp ,
.
.
».
«
»,
,
4.
, 2008
.,
.,
.
:
.
.
,1992, 296 .
55
:
:
.
.
,
,
.
.
.
,
,
.
.
,
,
.
.
,
,
.
,
.
2009
.
,
.
Aurelien Crida
Astronomy Meeting)
2008 .
.
JENAM (Joint European National
2009 .
Crida, A. Solar System formation (2009), September 8-12, VIENNA, AUSTRIA
Abstract. In this review, three major changes in our understanding of the early history of
the Solar System are presented. 1) Early differentiation: A few recent results support the idea
that protoplanet formation and differentiation occurred partly simultaneously than CAI
formation. First, some iron meteorites, eucrites, and angrites older than the chondrules or even
than the CAI have been found. Second, iron meteorites could be debris of early disrupted
differentiated planetesimals, scattered from the terrestrial planet region to the Main Belt. Finally,
chondrules contain fragments of planetesimal material. 2) Earth and Moon: An equilibration
mechanism explains the identical Oxygen isotopic composition of the Earth and the Moon. In
addition, it has been shown that the Earth and the Moon mantles have the same 182^W anomaly,
in contrast to what was believed before. Consequently, the Moon forming impact should have
occurred after the extinction of the 182Hf radioactivity, about 60 Myr after Solar System
formation. This new datation is in agreement with new N-body numerical simulations of the last
phase of terrestrial planets formation, in which giant impacts occur during about 100 Myr. 3)
Giant planets and Nice model: The migration of the giant planets in the protoplanetary disc can
be prevented if the planets are in resonance, close to each other. In the ``Nice model'', the 4 outer
planets of the Solar System were in a compact configuration after the dissipation of gaseous disc.
A few hundred million years later, a global instability drives the planets on their present orbits,
producing the Late Heavy Bombardment. In this frame, a lot of characteristics of our Solar
System can be explained. Comment: Invited review talk on Solar System formation, at the
JENAM 2008 conference. Proceeding to appear in "Reviews in Modern Astronomy, 21".
:
,
56
,
.
.1990]).
[
80.
. (
.
.
[
, 2005]
.
.
-2009 (
, 2009),
“Nice model”
“Late Heavy Bombardment”,
,
“main stream”
.
,
,
,
.
1.
(
.
:
)
» (Late
«
Bombardment) 3.8-4
5
.
20
.
“Nice model”,
0.5
,
.,
.
2.
.
:
(
),
,
,
(100
)
,
.
3.
,
,
.
6 1027
,
100
, 2005].
,
–
[
10( 21-22)
,
4.4
.
n(m) ~ m-1.6
)
,
,
.
.
,
,
,
.
.
,
(
),
,
.
,
(
.
).
.
.
57
,
,
5
15
(
[
., 1990].
,
(
).
[Collins et
.,
al, 2005]):
Vm
0.25
vi2
8.9 10
Vi
12
E sin ,
m
Vm –
, Vi –
m
1
–
–
(mv2/2, J),
,E–
.
,
4/5 e
7-8
1/5
,
4/5
.
)
(100
4-5
.
.
,
4
,
1021 – 1022 .
3
2-3
!!!)
3
2
.
,
(
0.55
,
3
.
0.3
,
.
3
.
,
,
(
)
,
.
,
,
,
,
,
.
,
1. Crida A. Solar System formation // Proceeding to appear in “Reviews in Modern
Astronomy, 21”. http://adsabs.harvard.edu/abs/2009arXiv0903.3008C.
2.
.,
.,
.
:
. .:
, 1990. 296 .
3.
.,
.
//
. 1996. N 6, . 3-16.
4. Pechernikova G.V., Vityazev A.V. Statistical model of Earth Moon coaccretion and
macroimpacts // XXVII Lunar and Planet. Sci. Conf., 1996. P. 1213-1214.
5. Pechernikova G.V., Vityazev A.V. Formation and composition of prelunar swarm in
Earth Moon coaccretion model // Abst. Internat. Conf. "Planetary Systems the long viev",
Blois, 1997. P. 56.
6.
.
//
, 2005, . 401, 3, . 391-394.
7. Pechernikova G.V., Vityazev A.V. Origin of the small Solar System bodies //
“Asteroid-Comet Hazard – 2009 (ACH-2009), St. Petersburg. (
).
8. Collins G.S., Melosh H.J., Marcus R.A. Earth Impact Effects Program: A Web-based
computer program for calculating the regional environmental consequences of a meteoroid
impact on Earth // Meteoritics & Planetary Science 40, Nr 6, 817-840 (2005).
58
1.
2.
//
23
1.
Pechernikova G.V., Vityazev A.V. Origin of the small Solar System bodies //
“Asteroid-Comet Hazard – 2009 (ACH-2009), St. Petersburg. (
).
.,
.
«
», 222008,
.
.,
.
//
2009 (
, 24-28
) // ASTROKAZAN – 2009, Reports. P. 96-97.
2. Vityazev A.V., Pechernikova G.V. Origin of the small Solar System bodies (invited
paper) //Book of Abstracts of Intern. Conf. “Asteroid-Comet Hazard – 2009 (ACH-2009), St.
Petersburg. P. 10-13.
59
–
:
:
.
,
.
,
.-
.
.
.
,
.
,
.
,
.
.
2009 .
(1)
:
–
.
,
“
”
.
(2)
(343
Ni
)
–
.
,
Ni-
Ol –
.
.
Fe-Ni
Ni
.
LL.
(3)
(Ariskin et al., 2008;
., 2009; Bychkov et al., 2009),
SCSS (Sulfur Content at Sulfide Saturation)
–
.
“
”
.
1.
2007-2008
.
,
“
(Yakovlev et al., 2008),
”
Fe-Ni
” (
., 2008)
,
(
60
.
100-150 )
.
Ni
(104-105),
–
“
”
,
,
–
Ni
.
III (1200 ),
18
.
.6
. (
.,
. 10).
. 1.
100.00
2600
III (12000C)
METEOMOD-2009
METEOMOD-2008
80.00
2400
2200
T, 0C
60.00
Ni
2008;
2006-2008
2000
40.00
1800
20.00
1600
0.00
1400
0.00
5.00
10.00
15.00
,
20.00
25.00
0.00
5.00
10.00
.%
15.00
,
20.00
. 1.
Fe-Ni
“
(2008 .)
” (
25.00
.%
III
”
(2009 .)
1200
-
.
. 6
P=1
” - 0.5
“
. (2008)).
.“
.%, log fO2 = -6.70.
2.
Ni
–
–
,
(
)
–
.
2008 . (
., 2008; Yakovlev et al., 2008)
,
,
102-103 ppm.
–
,
Ni
.
,
“NiO”
”
“Ni.
.
Ni
,
.
“
”
–
Ni-
61
,
–
.
.
.
25
343
,
Ni
. 1).
,
,
.
1070-1600°C
ppm
3
NiO
.%.
80 ppm
1.
N
1
Ehlers, et al., 1992
16
Hart and Davis,
1978
Kinzler, et al., 1990
35-100
.%,
–
.%.
40
Ni
SiO2
Duke, 1976
Fo
26.5
-
NiO
#
, °C
*
.%)
.%)
CMASFN
51.64
0.044
1150
428
47.97-59.27
0.008-0.343
1350-1275
26
20
Fo-Fa-AbAl
Fo-Ab-An
46.59-68.76
0.120-0.680
1450-1250
399
10
CMASFN
45.20-58.10
0.210-0.540
1285-1200
130
Mysen, 2007
22
CMASFNK
44.11-66.16
0.300-0.520
1550-1450
881
Mysen, 2006
20
CMASF
37.72-46.54
0.070-0.680
1375-1300
940
Mysen, 2007
38
CMASN
44.30-62.50
0.190-0.720
1500-1350
5001
Mysen, 2008
28
CMS
49.75-60.24
0.430-0.940
1650-1510
5002
Takahashi, 1978
44
MSFNK,
BAS
38.91-70.35
0.020-3.030
1500-1200
177
Agee and Walker,
1990
Arndt, 1977
9
8
KOM, PER
45.77-53.43
0.057-0.004
1600-1300
126
3
3
KOM, BAS
47.50-50.00
0.020-0.090
1470-1225
36
Bickle, 1978
Brenan, et al., 2005
8
6
5
5
KOM
BAS
47.69-51.88
47.03-52.73
0.005-0.069
0.060-0.530
1570-1503
1345-1260
42
818
Canil, 1997
10
5
KOM
49.87-53.08
0.010-0.050
1425-1225
389
Canil and
Fedortchouk, 2001
Canil, 2002
6
4
KOM, BAS
47.20-51.90
0.010-0.160
1375-1175
594
12
7
PER
47.60-52.30
0.010-0.280
1375-1300
657
20
18
KOM, MET
49.10-61.60
0.003-0.176
1350
455
16
MET
34.20-40.60
0.150-0.440
1325-1139
202
1
MET
43.49
0.017
1275
70
Gaetani and Grove,
1997
Jurewicz, et al.,
1993
Mysen and
Kushiro, 1976
Nabelek, 1980
8
1
5
4
BAS
49.30-50.00
0.013-0.038
1265
214
Parman, et al., 1997
4
4
KOM
50.30-52.00
0.030-0.160
1435-1250
398
Righter, et al., 2004
4
ANK
44.59-47.09
0.060-0.860
1300-1264
734
Snyder and
Carmichael, 1992
21
BAS, ANB
42.90-54.60
0.042-1.400
1290-1120
136
62
1
Tuff, et al., 2005
5
3
PIC
49.03-51.34
0.010-0.060
1350-1125
827
Wang and Gaetani,
2008
13
5
BAS, ECL
47.07-62.81
0.018-0.491
1325-1200
5000
N* -
,
Ni-Ol
.
: S - SiO2, A - Al2O3, F - FeO, M - MgO, C - CaO, N -
Na2O, K- K2O.
,
Beattie et al. (1991)
.
,
35
> 1
Fo
.%.
34
NiO
. 2).
1.0
0.8
0.6
0.4
0.2
0.0
0.0
0.2
0.4
)
.
.%,
1
NiOOl wt% (Wang&Gaetani,08)
NiOOl wt% (Beattie et al.,91)
(
) – Fo
0.6
0.8
1.0
26
36
42
70
126
130
136
177
202
214
389
398
399
1.0
0.8
0.6
0.4
0.2
0.0
0.0
0.2
NiOOl wt% (exp)
. 2.
(Beattie et al., 1991; Beattie, 1993)
Ni-
428
466
594
657
734
818
827
881
940
5000
5001
5002
5003
0.4
NiO
Ol
0.6
0.8
1.0
wt% (exp)
NiO
,
(Wang&Gaetani, 2008)
.
–
Ni-
:
NiO (L) + 0.5SiO2 (L)= NiSi0.5O2 (Ol),
:
ln K = aOl(NiSi0.5O2)/ [aL(NiO) [aL(SiO2)]1/2 .
lnK
(2000)
ln K = a/T + bln RL + c,
RL –
.
lnK
(
,
Ni
.
(1)
(2)
:
(3)
, a, b
. 3,
).
c –
.3
63
4.0
NiOOl wt% (calc)
ln K(NiSi0.5O2)
3.0
2.0
1.0
0.0
428
466
594
657
734
818
827
881
940
5000
5001
5002
5003
26
36
42
70
126
130
136
177
202
214
389
398
399
1.0
ln K = 9908.45 / TK - 4.80
0.8
0.6
0.4
0.2
-1.0
0.0
4.0
5.0
6.0
7.0
8.0
0.0
0.2
0.4
0.6
0.8
1.0
NiOOl wt% (exp)
104/TK
. 3.
NiO
Ni-Ol –
(
)
(
)
Ni-
.
NiO
4-
Ol (Mg, Fe, Ca, Mn)
5-
,
Ni
.
,
Fe-Ni
Ni
.
.
LL (
. 4
5).
,
,
1820
(
1580 (
IW+2).
1900
T, C
1900
1800
Met
1800
Met
1700
1600
1500
1900
IW+2.0
IW
1800
1700
IW)
1600
Met+Ol
1600
Met + Ol
1500
Met + Ol
1400
1300
Met+Ol+Opx
1200
0.00 1.00 2.00 3.00 4.00
,
Met+Ol
1500
1400
1300
Met
1700
Met + Ol
1400
1300
Met+Ol+Opx
Met+Ol+Opx
1200
1200
0.00 0.50 1.00 1.50 2.00 2.50
0.00
.%
NiO
,
.%
Ni
40.00
80.00
,
. 4.
LL
.
LL
St.Severin (SiO2 – 40.6, TiO2 – 0.11, Al2O3 –
2.37, FeO – 25.9, MnO – 0.32, MgO – 25.2, CaO – 1.92, Na2O – 1.0, P2O5 0.22, Cr2O3 – 0.58,
NiO – 2.0
.%).
:
– IW,
– IW+2.
–
,
64
. 4
(IW)
,
(
)
.%
IW+2.
–
(
NiO
. 4),
(
. 4).
,
“IW+2”
,
IW.
3.
,
FeS (Ariskin et al., 2008;
.,
2009; Bychkov et al., 2009).
(Sulfur Content at Sulfide Saturation)
SCSS
–
(
.
,
)
.
Ni
–
.
–
. 5
SCSS
LL
FeO
.
.
1900
1800
1900
IW+2.0
IW
T, C
1700
1800
1800
Met
1700
Met
1600
1700
1600
Met+Ol
1500
1500
1400
1300
1900
1600
Met+Ol
1500
Met+Ol
1400
1300
Met+Ol+Opx
1200
Met+Ol+Opx
1300
1200
1200
0.00 0.10 0.20 0.30 0.40
0.00 1.00 2.00 3.00 4.00
10 14 18 22 26 30
FeO*,
1400
.%
SCSS,
.%
NiO
,
.%
. 5.
LL
.
LL
St.Severin (SiO2 – 40.6, TiO2 – 0.11, Al2O3 –
2.37, FeO – 25.9, MnO – 0.32, MgO – 25.2, CaO – 1.92, Na2O – 1.0, P2O5 0.22, Cr2O3 – 0.58,
NiO – 2.0
.%).
:
– IW,
– IW+2.
65
.,
.,
.
.
). .:
.,
:
.,
.,
.“
”(
“
.,
.
”. 2008. . 345-364.
. (2009)
: III
.
.“
….” (
,
2009). . 1. . 96-99.
Ariskin A.A., Bychkov K.A., Danyushevsky L.V., Barmina G.S. (2008) A model of S
solubility in basaltic melts at 1 atm. Geochim. Cosmochim. Acta. V. 72 (Suppl. 1: Abs. 18th
Annual Goldschmidt conf., Vancouver, Canada, 2008). A31.
Bychkov K.A., Ariskin A.A., Danyushevsky L.V., and Barmina G.S. (2009) Testing of
sulphide solubility models and calculations of SCSS during crystallization of mafic magmas
parental to layered intrusions. Northwestern Geology. V. 42 (Suppl: Proc. Xi’an Intern. Ni-Cu
(Pt) Deposit Symposium 2009). P. 15-19.
Yakovlev O.I., Ariskin A.A., Barmina G.S., Bychkov K.A. Modeling Fe-Ni metal and
silicate melt compositions produced by thermal reduction of nebular condensates above the
liquidus // Abs. Annual Goldschmidt conf. (Vancuver, Canada). 2008.
66
:
:
.
,
.
.
,
.
.
,
.
.
1.
(
)
)
,
(
,
.
,
,
.
.
,
.
4
.
.
«
».
,
Fe-Al-Si-Ti-P-C-S-N)
,
113
.
(H-O-K-Na-Ca-Mg19
14
,
.
HCh (GIBBS)
,
,
.
,
,
.
» (Eh, pH,
,
,
-
«
)
,
,
.
.
,
2.
«
»
,
(K/Na
n)
10-5-10-7
.
67
«
»
K/Na
25oC.
,
CO2
n×10
K/Na
CH4
,
.
,
CH4
CO2
,
10%.
NH3, NH4+,
N2
,
N2, H2, CO2, CH4,
NH3, H2S.
P CO2=10
10
, P CH4 = 10-8 10-5
.1 (
K/Na – lg P CH4 – lg P CO2
-7 1
lg P CH4 – lg P CO2)
P CO2 = 10
, P CH4 = 10-6 1
K/Na
4-14,
K
0.1-0.3 m,
Na 0.05-0.1 m,
Mg 0.01 m,
Ca 0.05-0.1 m,
+
-3
-9
2.10 m,
P(V) 5×10 m, pH=8-9, Eh=-450 50
(NH4 +NH3)
25 .
-5
-8
lg P CH4
K/Na
-8
12.00-14.00
10.00-12.00
8.00-10.00
-6
6.00-8.00
4.00-6.00
2.00-4.00
-4
-9
-8
-7
-6
-5
-4
0.00-2.00
-3
lg P CO2
. 1.
K/Na
»
68
«
, 25 .
2. K/Na
(
.2),
. 2.
K/Na,
(
),
.
,3–
: 1, 2 –
,
:
,
–
,
–
.
–
,
,
–
–
3.
,
,
–
–
–
–
,
,
–
.
«
»
(V),
0.0071
(III),
(III)
(V)
1e-60
0.0070
1e-70
0.0069
1e-80
-12
-10
-8
-6
-4
-2
lg P H2
»
. 3.
25
(V)
P(III)
«
,
(QFM).
.
H-O-C-N-P
25 .
: H2, O2, N2, H2O, CH4, CO, CO2, N2,
69
NH3, H3PO2, H3PO3, H3PO4, H4P2O7.
,
,
,
.
P, N, C
H2P2O72-,
HP2O73-
,
,
4
(
,
(
PH3.
P, N, C (
.3.1).
.),
P(V)
H2>7),
+H2=HPO32-+H2O (pK=7.06).
pH=4-6.
(
H3PO4+H2=H3PO3+H2O (pK=8.52)
NH4+
pH>9
PO43HPO42.3.1).
3.1.
(O/P<4)
H-O-C-N-P
25
(f
H2
CH4
CO
CO2
N2
NH3
70
N
9.98×10-1
; C+N+P
1
+2
P
O
N
PH3
HP2O72H2PO7NH4+
2)
1
; C+N+P
1
+3
P
O
N
H2P2O72HP2O73PH3
NH4+
2)
1
N
9.98×10-1
2.86×10-85
2.30×10-3
1.72×10-30
1.06×10-27
2.54×10-18
1.21×10-6
(f
H2
1
N
9.98×10-1
2.28×10-3
2.52×10-41
2.28×10-49
7.74×10-16
2.11×10-5
(f
H2
O2
CH4
CO
CO2
N2
NH3
2)
N
9.98×10-1
1.9×10-3
5.18×10-42
1.10×10-50
1.65×10-13
3.09×10-4
(f
H2
CH4
CO
CO2
N2
NH3
.),
; C+N+P
1
+4
P
N
H2P2O72H2PO4HP2O72H3PO4
NH4+
2)
1
; C+N+P
1
+ 10
P
H2PO4-
O
M
53
35
1.7
1.6
148
O
M
5.9
,
(lg f
HPO42NH4+
4.83×10-84
2.30×10-3
7.10×10-30
1.79×10-26
6.11×10-19
5.94×10-7
O2
CH4
CO
CO2
N2
NH3
(f
H2P2O72HP2O73H3PO4
NH4+
2)
1
; C+N+P
N
9.98×10-1
7.54×10-84
2.30×10-3
8.87×10-26
2.79×10-26
1.55×10-20
9.46×10-8
H2
O2
CH4
CO
CO2
N2
NH3
1.4
0.1
0.1
9.0
1
+ H2O 1
P
M
1.0
0.01
0.006
0.005
1.1
H2PO4H2P2O72H3PO4
HPO42NH4+
4.
:
(
1999a, 2006),
90,
, “Treatise on Geochemistry”, 2003, vol. 1, 4; Mottl et al., 2007).
(Drake, ampins, 2005;
.),
(
, Delsemme, 1999,
–
,
–
(Delsemme, 2006;
.).
.,
,
.
:
1.
,
–
,
(
,
).
2.
1
.
.
3.
,
–
.
,
.
,
.
71
”
,
(Pepin, 1991; Tolstikhin, O’Nions, 1994;
Daupas et al., 2003; Porcelli, Pepin, 2003;
1.
(
Xe/Kr –
Xe
2.
.):
30%).
.) 129Xe,
(7%
.
.
–
,
–
,
(
., 2009):
Ne
35-40
50
3-5
30 ,
(
),
.
,
(Mottl et al., 2007;
(
,
., 2009)
.)
.
,
,
(Porcelli, Pepin, 2003),
. (
Xe
,
,
- Daupas et al., 2003)
Xe
,
,
,
>99%, Halliday, 2003).
,
).
2003,
(
,
85% - Porcelli, Pepin,
,
,
(
,
(
,
),
,
,
.
(
)
.
129
–
Xe
.
129
129
.
Xe
I
(Drake,
,
35
15.7
,
,
129
,
(
).
–
Mottle et al., 2007).
I,
ampins, 2005)
,
,
.
129
(Porcelli, Turekian., 2003;
,
,
.
,
,
,
,
!
,
72
Xe
,
.
,
,
.
(
129
Xe).
,
.
.
(Bockelée-Morvan et al.,
2005; Jehin et al., 2009).
,
.
,
“
”
.
.
(
!)
.
,
2003; Drake,
ampins, 2005;
(Halliday,
.).
,
,
(
. 1).
,
,
,
.
.
1.
.
(-80‰).
,
,
,
(McKeegan, Leshin, 2001;
.).
,
,
.
2.
.
Bopp (
– Halley, Hyakutake
,
. 1),
Hale-
.
,
(Delsemme, 2006).
, Horner et al., 2007)
,
.
,
(Delsemme, 2006)
,
,
:
,
–
.
,
,
,
.
.
UV(
.
. 1)
,
.
4.1.
al., 2007),
IR-
.
(Mottl et
.
D/H, 10-6
25
D, ‰
-871
:
150
120 300
-229
+7
+920
73
:
1P/Halley
C/Hyakutake
C/Hale-Bopp
C/2001 Q4 (NEAT)
C/2002 T7 (LINEAR)
8P/Tuttle
149
0
308±50
290±100
330±80
460±140
250±70
409±145
+1067
+1054
+1214
+2087
+678
+1745
Jehin et al., 2009
“
Villanueva et al., 2009
,
,
,
–
,
.
,
(
.,
2009).
,
Stardust
Deep Impact.
3.
.
Hale-Bopp (
Ne, Kr Xe
) (Bockelée-Morvan et al., 2005).
Ar –
Ar/O
1.8
–
–
10%
,
,
.
Ar
,
(46 10-4).
LINEAR 2000 WM1
LINEAR 2001 A2
Ar
.
,
,
,
.
,
,
,
,
,
.
ampins, 2005)
(Drake,
.
,
,
.
Ar
–
50%
–
50%
Hale-Bopp,
.
,
,
,
,
2400
.
-
,
.
Hale-Bopp
,
,
,
74
.
,
,
(Daupas et al., 2000),
,
0
0.1.
,
.
,
.
85% - Porcelli, Turekian, 2003)
(
.
5.1 1021
:
78%
,
4.6 1021 (
.4.2).
,
NH3
N2.
(Bockelée-Morvan et al., 2005),
,
0.5%
1.5%.
,
(Delsemme, 2006)
(Bockelée-Morvan et al., 2005)
2.6%,
.
.4.2).
(
,
,
.
. 4.2.
,
,
2-17
.
4.2.
,
.
78
85%
5.1 1021
3.98 1021
Mottl et al., 2007
1.621 1024
8.11 1021
Mottl et al., 2007
.%
,
(Bockelée-Morvan et al.,
2005)
–
0.5%
6.8 1022
–
(Delsemme, 2006)
4.1%
–
.
–
(6 – 50 %),
.
.
,
.
,
,
.
75
,
.
,
.
,
,
,
–
.
.,
.,
.,
.
.
.
.,
, 2009, 576 .
Bockelée-Morvan D., Crovisier J., Mumma M.J., Weaver H. A. The Composition of
Cometary Volatiles. // In “Comets II”, Univ. of Ariz. Press, eds. M. Festou, H. U. Keller, and H.
A. Weaver, 2005, 391-423
Brownlee D.E. Comets. // In “Treatise on Geochemistry”, 2003, vol. 1, 663-688.
Dauphas N. The dual origin of the terrestrial atmosphere. // arXiv:astro-ph/0306605v1 28
Jun 2003.
Dauphas N., Robert F., Marty B. The late asteroidal and cometary bombardment of Earth
as recorded in water deuterium to protium ratio. // Icarus, 2000, vol. 148, no. 2, 508–512.
Delsemme A.H. Cometary origin of the biosphere. // Icarus, 1999, vol. 146, no. 2, 313–
325.
Delsemme A.H. The deuterium enrichment observed in recent comets is consistent with
the cometary origin of seawater. // Planetary and Space Science, 1999a, vol. 47, no. 1-2, 125–
131.
Delsemme A. The origin of the atmosphere and of the oceans. // In: P.J. Thomas et al.,
“Comets and the Origin and Evolution of Life”, 2nd ed., Adv. Astrobiol. Biogeophys., SpringerVerlag, Berlin – Heidelberg, 2006, 29–68. (.pdf)
Drake M.J., Campins H. Origin of water on the terrestial planets. // In “Asteroid, Comets,
Meteors”, Proceedings IAU Symposium No. 229, 2005, 381-394.
Hallidey A.N. The origin and earliest history of the Earth. // In “Treatise on
Geochemistry”, 2003, vol. 1, 509-557.
Horner J., Mousis O., Hersant F. Constraints on the formation regions of comets from
their D:H ratios. // Earth, Moon and Planets, 2007, vol. 100, no. 1-2, 43-56.
Jehin E., Manfroid J., Hutsemékers D., Arpigny C., Zucconi J.-M. Isotopic ratios in
comets: Status and perspectives. // Earth, Moon and Planets, 2009, vol. 105, no. 2-4, 167-180.
McKeegan K.D., Leshin L.A. Stable isotope variations in extraterrestrial materials. //
Reviews in Mineralogy and Geochemistry, 2001, vol. 43; no. 1, 279-318.
Mottl M.J., Glazer B.T., Kaiser R.I., Meech K.J. Water and astrobiology. // Chemie der
Erde – Geochemistry, 2007, vol. 67, no. 4, 253-282.
Pepin R.O. On the origin and early evolution of terrestrial planet atmospheres and
meteoritic volatiles. // Icarus, 1991, vol. 92, 2-79.
Porcelli D., Pepin R.O. The origin of noble gases and major volatiles in the terrestrial
planets. // In “Treatise on Geochemistry”, 2003, vol. 4, 319-347.
Porcelli D., Turekian K.K. The history of planetary degassing as recorded by noble gases.
// In “Treatise on Geochemistry”, 2003, vol. 4, 281-318.
Tolstikhin I.N., O’Nions R.K. The earth’s missing xenon: a combination of early
degassing and of rare gas loss from the atmosphere. // Chemical Geology, 1994, vol. 115, 1-6.
Villanueva G.L., Mumma M.J., Bonev B.P., DiSanti M.A., Gibb E.L., Böhnhardt H., Lippi
M. A sensitive search for deuterated water in comet 8P/Tuttle. // Astrophysical Journal, 2009,
vol. 690, no. 1, L5-L9.
.
76
:
:
.
,
.-
.
.
.
,
.
,
.
,
.
,
.
.
2009
«
»
.
:
K/Na
(1)
(2).
1.
K/Na
-
(
2008;
,
,
,
, 2008)
»
,
,
,
.
,
,
,
K/Na
1
,
.
GEOCHEQ (
., 2008).
SUPCRT92) (
(
(
15° ,
0.1.
,
,
1
10, 1
–
100
.
(
1.3).
.1.1).
).
.1.2,
,
,
.
77
. 1.1.
.
,
.
,
,
.
,
,
(
1.6).
,
.1.4, 1.5,
pH,
.
,
,
(
,
)
,
.
.
.
. 1.2.
78
W/R = 10
. 1.3.
W/R =
0.1
. 1.4.
W/R = 10
. 1.5.
W/R = 1
79
. 1.6.
W/R = 0.1
,
(
.1.7, 1.8).
,
.
,
,
,
(
.1.9, 1.10, 1.11).
.
.
0.1
.
.
.
2009
,
,
K
Na
,
.
0.1
t = 44.5 - 52.7
,
(K/Na < 1).
K/Na
.
,
,
1 (
,
W/R =
.1.11).
,
K/Na
.
,
:
Na-
.
80
.
,
. 1.7.
W/R = 10
. 1.8.
W/R = 0.1
. 1.9.
W/R = 10
81
. 1.10.
W/R = 1
. 1.11.
W/R = 0.1
,
K/Na
,
,
.
,
,
2.
(
2007)
,
,
,
,
(3.2 G )
,
.
82
,
,
«
»
.2.1).
,
(
.
0.05*
.
40 000
,
.
- 15° .
.
2-1
0.016**.
2.1, 2.2,
. 2.2, 2.3)
,
,
,
. 2.1.
.
)
.
,
,
(140 %
)
6.75
.
2.1.
,
7
41.06
7.83
7.55
1.57
6.73
15.70
0.72
0.13
0.62
17.86
48.76
9.36
3.07
8.04
21.65
8.05
0.90
0.16
0.00
0.00
SiO2
Al2O3
Fe2O3
FeO
MgO
CaO
Na2O
K2O
H2O
CO2
.%
35
57.24
10.58
11.60
0.44
6.90
3.68
0.38
0.17
2.41
6.20
100
74.27
7.72
12.83
0.0008
0.47
1.15
0.30
0.22
3.04
0.00
2.2.
,
7
0.00E+00
0.00E+00
0.00E+00
0.00E+00
4.60E-02
0.00E+00
2.62E-01
K
Mg
Ca
Al
C
Si
S
*
2000
98.33
1.13
0.001
0.00
0.005
0.10
0.003
0.24
0.20
0.00
5.86E-04
3.86E-01
1.44E-03
2.49E-09
7.55E-02
1.45E-03
2.54E-01
35
4.35E-09
2.77E-01
9.91E-02
1.20E-02
5.82E-02
7.21E-06
2.61E-01
H2O
100
2000
1.58E-05
9.86E-04
3.13E-04
4.97E-03
4.69E-02
1.45E-03
2.62E-01
1.43E-05
1.59E-05
3.00E-06
1.07E-04
4.69E-02
1.45E-03
2.62E-01
-
Geocheq.
,
;
**
),
,
0.05
1000
(
1 .
83
3.60E-06
2.60E-01
8.54E-07
0.446
3.56E-04
2.60E-01
1.22E-02
0.491
4.01E-03
2.59E-01
5.70E-04
5.446
7.80E-03
2.59E-01
5.82E-03
5.857
0.00E+00
2.60E-01
0.00E+00
0.445
Na
Cl
Fe
pH
,
73 %
.
,
,
3
:
1.
,
)(
7
,
,
(
);
2.
,
,
,
(
,
,
) (7 - 50
3.
);
,
,
,
(
) (50 - 2000
).
2000
,
.%)
(3.3
(96.4
.%).
(
,
,
.
,
, 1974).
2.4
2.5
,
,
K/Na (>1).
. 2.2.
84
. 2.3.
. 2.4.
W/R = 10, K/Na = 45
. 2.5.
W/R = 0.1, K/Na = 6.8
85
2009
,
,
K/Na
.
2009
«
»(
.,
, 2007, 18 .
.,
.,
. 2008. . 421. 3. . 375-377
.,
.
.,
.,
–
,
.
K/Na-
)
,
//
,
.,
»
.,
, 1974, 272 .
. GEOCHEQ_M –
.
2008
.
. 2008.
1(26). URL:
http://www.scgis.ru/russian/cp1251/h_dgggms/1-2008/informbul-1_2008/mineral-22.pdf
.,
.,
.,
(K/Na)
// :
.
URSS.
. 2008. .403-409
.,
.,
//
,
.
86
:
(U-TH-PB,
HF, O, REE)
:
:
.-
.
.
,
.
,
.
.
.-
,
.
.
.
,
.
,
.
,
,
,
.
,
,
,
.
.
.
,
,
(
,
( 4.0
3.0
.
.
.
)
,
),
.
,
(4.5-4.0
.
,
.
,
),
,
4.0
.
.
.
,
4.0
.
,
(Amelin et al., 1999, Valley et a., 2006).
.
,
(Peck et al., 2001).
18
,
,
18
+5.5±1‰.
.
(
)
87
18
4.4
,
10‰,
,
.
,
(Mojzsis et al., 2001, Harrison et al.,
.
2008).
,
(Nemchin et al., 2006)
,
4.0
18
.
6-7‰,
.
.
(Wild et al., 2001; Valley et al., 2008)
,
.
,
,
Sm-Nd
,
,
.
,
,
.
(
)
,
,
,
(Darling et
,
al., 2009).
,
.
.
,
.
3.5
.
3.9
.
.
.
,
,
,
.
:
,
,
(
).
3.3
.
,
.
,
3.6-3.7
-
.
,
,
,
,
.
.
88
,
-
,
.
.
N
I
II III
IY
Y
YI
1
88-305,
88-306
2
6
4
3
84-328,
84-330
5
1
2
7
8
3
9
5
4
6
7/11, 7/12
92-218
10
..
.1; 2-3
258-
,3;6-
:
;4;7-
(
;9.
3-
,
5-
, 6, II-
- I, IY-
,
,
, III, YI -
, Y-
(
)
.
; 10 ,2-
: 1-
, 4:
);
;
-
.
,
,
.
,
1,5
,
,
.
35
,
–
1.2
.
.
,
,
.
,
,
,
.
.
,
(
)
(
).
2,83
.
,
.
U-Pb
.
U-Th-Pb
CAMECA 1270, NORDSIM,
,
.
-
Triton.
147
Sm/144Nd
0.005%
Sm
143
Nd/144Nd.
Nd
150
Nd +
149
Sm
Nd/144Nd
0.1%
143
89
148
Nd/144Nd 0.241572,
DM) [18]
143
Nd/144Nd=0.513151, 147Sm/144Nd=0.212.
146
Nd/144Nd = 0.7219.
:
4
.
.
(
7/11, 5/88)
(92-218)
CU-1),
.
.
1000
7-11,
7-12,
5-88,
100
92-218,
>3.0
. [20]
10
1
Ba
Th
K
Nb
La
Ce
Sr
Nd
Hf
Zr
Sm
1000
Eu
Ti
Dy
Er
Yb
Lu
PAAS
>3Ga
7-11,
7-12,
92-218,
100
5-88,
10
1
La
Ce
Pr
Nd
Sm
Eu
Gd
Tb
Dy
Ho
Er
Tm
Yb
Lu
. 2.
,
,
(LaN/YbN
17
,
32)
.
Cr/Ni, Co/V
,
.
,
,
,
.
,
,
,
–
,
.
NORDSIM,
.
90
207
110
,
Pb/206Pb.
.
–
,
U-Th-Pb
,
.
CU-1+7/11+5/88
zircons from metasediments
Soroki structure
0.8
3800
3000
0.6
Pb/
238
U
3400
206
2600
0.42200
0.2
5
15
25
35
45
207
Pb/235U
6
CU-1+7/11+5/88
Concordance higher than
10%
Number
5
4
3
2
1
0
3100
3200
3300
3400
207
3500
3600
3700
3800
206
Pb/
Pb
. 3.
40%
,
0.7.
ppm
Th/U
3500
3700
.
(
. 3).
3784
.
150- 320 ppm,
3.5-3.6
.
Th/U
0.5.
–
3.2-3.3
.
.
3.3
.
,
0.5-0.7.
.
,
5
0.4100-200
.
.
100 ppm,
,
Th/U
,
.
91
Sm-Nd
,
3.2
.
,
3.42-
.
[Sm]
, ppm
[Nd]
147Sm/144Nd
143Nd/144Nd
±2
T(DM), Ga
2.9
2.1
2.2
18.5
13.1
13.7
0.0953
0.0972
0.0985
0.510626
0.510589
0.510584
0.000012
0.000008
0.000005
3.28
3.38
3.42
7/12
7/11
,
(
)
.
Cr/V, Ni/Co.
-
Nb
,
.
,
,
(
),
,
,
,
Eu
Nb.
,
..
PAAS,
,
.
,
,
3.3
.
.
,
,
.
3700-3800
.
.
.
,
,
3680- 3400
,
.
39
-0.9%.
CU1
3785±2
50%
.
,
,
207
3685±6
.
Pb/206Pb.
.
3570
.
.
,
.
3300
92
.
.
3200-3300
,
,
.
.
.
Th/U
,
,
.
,
,
,
,
,
TTG,
,
,
,
,
–
,
.
,
,
.
,
,
.
,
.
,
2
«
2
»
American Journal of Science, in press.
93
,
:
:
.
,
.
.
.
,
.
,
.
.
(
),
(FeNi)
(
(FeS)
).
,
(
,
, 1995, 2004).
,
,
,
.
(~5%)
FeS (95%Fe, 5%S).
(5%S
.
Fe),
.
,
.
,
,
,
, 1975;
(
, 1975;
, 1982;
,
1995).
,
1998, 2004;
,
85
.% Ol, 10
.% Pic, 5
S (95
. % Fe 5
.%S),
94
(
, 1995,
, 1995, 1997).
(
.% Fe,
)
5
.%S
Fe,
, 1995, 1998, 2004).
:
Fe-
: 85
.% Ol, 10
.% Bas (+10%FeO), 5
.% Fe-S (95
. % Fe
5
.%S),
Ol-
, Pic-
, Bas-
,
, Fe-
, Fe-S
(95
. % Fe
5
.%S)
.
-85/1) - .
(
-85/1): SiO2-41.10; MgO-48.58; FeO-10.26; CaO-0.08;
-85/2) - .
(
-85/1): SiO2-42.87; MgO-53.56; FeO-9.51; CaO-0.09;
349 (
,
):
349 (
,
): SiO2-45.60; TiO2-0.82; Al2O312.70; Fe2O3-2.15; FeO-8.19; MnO-0.19; MgO-18.17; CaO-10.56;
(TRV-158, High-Ca boninite from Sous Troodos)
(TRV-158, High-Ca boninite from Sous Troodos) ): SiO2-49.62; TiO20.17; Al2O3-8.75; Fe2O3---; FeO-7.96; MnO-0.15; MgO-17.61; CaO-8.76;
,
)
(
,
): SiO2-52.5; TiO2-0.85; Al2O3-15.16; Fe2O34.48; FeO-5.16; MnO-0.10; MgO-9.49; CaO-9.29;
– FeS2.
«
3-5
»,
98 %
4
.%
(96% Fe
2% )
,
30-50
,(
).
,
5% (
)
.
Fe-Ni
.
,
.4, b.
. 1, a, b
CS-97
CS-110,
CS-122, CS-123, CS-126
. 3,a,b,d.
CS-78,
. 2,d.
CS-97.
: 85%Ol; 10% Bas (+10%FeO); 5%Fe (+2%C); 5%S
Fe
o
(95
.%Fe 5
.%S); g=4000; T=1480 C; t1=10
(
); t2=5
(
).
.
log
2 = ~ -11,5.
,
,
.
,
,
.
,
» ( . 1, ),
.
( = ~1480 ),
,
,
. 3, .
95
.
FeO
.
20%,
,
2%
.
,
,
,
. 1.
CS -110.
: 85%Ol; 10%Bas(+10%FeO); 5%Fe(+2%C); 5%S
Fe
(95
.% Fe 5
.%S).; g=4000; T=1460oC; t1=10
(
); t2=5
(
).
ZrO2.
log 2 = ~ -11,5
«
,
,
.
( = 1460 ),
,
,
. 3,b.
,
ZrO2 ,
,
. 1.
,
,
,
.
CS-122, CS-123, CS-126 ( . 3,a,b,d)
,
,
=1440 .
.
,
.
CS-78 ( . 2,d)
.
.
,
.
.
.
.
,
, Si
P.
.
.
,
.
.
.
,
,
.
10%
(
1012
.
) log = ~109-~40%FeO,
,
log
(log = ~ - 2-3.10-2
)(
log !!!)
S, P, Si,
. 4, .
= ~ 2.10-1
.
,
.
,
,
. 1, ;
. 3,d.
.
,
.
.
,
.
96
-
.
«
,
».
.
.
.
.
,
),
,
,
,
,
,
. 1.
MgO
~20-40% FeO.
,
,
,
.
»
.
,
,
,
MgO, FeO, Al2O3, SiO2
Al2O3 , ZrO2,
.
,
,
,
=1400-1440 ),
(
.)
(10%)
1480
,
,
FeS (95
=1421,9 .
(20% FeO)
log
.% Fe
.
5
,
( =1460-1480 ),
( . 4, )
.%S)
=1430 ,
.
=14602
= ~ -11,5
.
97
1.
SC -58, SC-97, CS-103, CS-110 , CS-120
: SC-47, SC-53,
.
.
=1400 .
c-
-
.
-
-
0.0142
0.4560
0.1817
0.1270
0.0004
0.1056
0.0082
0.0003
0.1034
0.0019
0.0000
0.0000
0.00427
0.67993
0.08663
0.14191
0.00464
0.10957
0.00145
0.00000
0.00405
0.00115
0.00083
0.00090
-
0.01209
0.60433
0.08778
0.13082
0.00160
0.12223
0.00584
0.00037
0.07458
0.00353
0.00262
0.00004
0.01045
0.43935
0.15657
0.22896
0.00143
0.06624
0.00510
0.00000
0.10894
0.00250
0.00256
0.00000
SC-97
CS-120
ZrO2
CS-110
0.0079
0.5781
0.1659
0.1171
0.0033
0.0737
0.0038
CS103
(Fo)
0.0009
0.4385
0.1144
0.2747
0.0002
0.1546
0.0077
0.0016
0.0036
0.06
0.0061
0.0010
0.0008
95.54
99.89
0.0129
0.5473
0.0801
0.1162
0.0033
0.1345
0.0061
0.0022
0.0888
0.0031
0.0016
0.4741
0.1812
0.0750
0.0419
0.0076
0.0017
1.03535
SC-97
CS-110
CS-103 (Fo)
98
-
-
-
SC-53
SC-47
2.46
52.5
9.49
15.16
0.89
9.29
0.85
0.13
9.64
0.10
-
-
SC -58
Na2O
SiO2
MgO
Al2O3
K2O
CaO
TiO2
P2O5
FeO
MnO
Cr2O3
NiO
WO3
ZrO2
-
1.04582
1.02210
20 % FeO (
99,94
)
30%
85%
99
100
:
:
.
,
.
.
,
.
.
,
.
.
2009 : «
in situ
.
, Eh
«
–
».
»
150° .
-
-
25
,
.
K/Na (
2).
NH4NO3
(
): K 0.029-0.059, Na 0.024-0.036, Ca 1.41-10.34, Mg 3.33-5.74,
.)= 0.7-1.1, pH=6.73-7.88.
2009
«
»
150 ( .1,
.
-Eh
,
.
2
2.
,
H+, K+
Na+.
–
Ag, AgCl/ 3M KCl,
,
«
»
.
( 3836)
,
(
).
( 4021)
,
,
).
(
–
. 3836)
,
(
. 4021),
(
. 1,
1.2).
101
. 1.
.
. 2.
.
102
1.
(
. 3836) (
,
,
2007)
SiO2
39.76
TiO2
0.06
Al2O3
0.33
FeO
9.24
MnO
0.10
,
.%
CaO Na2O
0.50 0.01
MgO
49.29
K2O
0.01
Cr2O3
0.37
NiO
0.33
,
,
,
3
,
10–6
,
.
,
(0.7-1.5) 10-6
(
.2).
(1-1.6) 10-6
( 5%
,
),
.
2.
(
/
)
.
27.07.09
26.08.09
28.09.09
0.029
0.029
0.044
Na
0.024
0.024
0.036
Ca
10.34
3.87
3.41
27.07.09
26.08.09
28.09.09
0.044
0.044
0.059
0.024
0.024
0.036
6.14
1.41
1.71
3836
,
Mg
pH
5.74 6.73
3.33 6.78
3.64 6.92
4021
5.05 7.59
5.40 7.75
5.66 7.98
K/Na ( )
0.7
0.7
0.7
1.1
1.1
0.9
( 0.005
)
Na.
–
,
,
,
(
(
. 3836),
. 4021).
,
,
Na
.
90
,
1.5
;
. % K2O
3.5
. % Na2O (
. 3).
.
3.
. .:
SiO2
47-52
TiO2
1-3.4
Al2O3
14-18
(
.«
.
, 1985).
Fe2O3
2-6
FeO
4-11
MnO
0.1-0.3
,
.%
MgO CaO
5-7 6-13
(
Na2O
1.6-3.5
K2O
0.1-1.5
7-13)
2O5
<0.5
,
-
103
,
.
90
,
.
1
3836 (
)
(
(
)-
%
)- 40 %.
.
.
,
0.5
2
.
(100),
,
(100)
.
(001)
,
,
.
IV
,
.
.
0.5
,
c:Ng = 38'
6
.
.
,
.
,
,
.
,
(100),
,
.
(101).
,
,
.
,
,
,
.
,
.
,
,
,
.
.
.
104
.
-
-
px
2
-4021 (
)
-75 %
(Opx)- 25 %
,
.
,
1
6
.
.
.
x
II
),
(
,
,
,
.
,
.
Opx
,
2
0.5
.
.
,
x
.
II
,
,
.
-
;
.
.
105
Opx
Ol
Opx
Opx
106
:
:
.
.
,
.
,
.
,
.
,
.
,
.
.
,
.
.
, . .
.
,
,
,
.
.
.
.
2009
2- , 3-
3-
.
,
(130
4-
.
Ala, Gly
–
,
, 300
)
Ala, Gly Asp
1:1:1
1:4:1
Glu
Lys
1:2:1:1
1:1:1:1
4-
.
1:2:1:1
1:1:1
1:4:1
Ala, Gly, Asp
1:1:1:1
.
Ala, Gly, Glu Lys
–
.
- (Ala
Gly)
.
E2 (Ala, Gly
Glu
1:1:1, 1.5
. H2SO4)
,
(
)
,
-
Glu
,
H2O.
–
(
)
,
,
,
–
Glu.
(
).
2
.
,
,
–
12
.
,
107
(
),
,
,
Glu.
.
1
.
«
.»
11-12
(
2009 .,
,
)
(31
,
1.
,
572009 .,
–4
,
).
.
,
.
,
.
,
.
,
.
,
.
. //
, 2009 . –
.
2. Alexey S. Kononikhin, Olga V. Demina, Erast V. Kunenkov, Andrey A. Khodonov,
Maria I. Indeykina, Igor A. Popov, Sergey D. Varfolomeev, Eugene N. Nikolaev. Sequencing of
peptides produced in the process of mimicking prebiotic syntheses from amino acids by
thermocycling. // 57th ASMS Conference on Mass Spectrometry, May 31 - June 4, 2009
(Phyladelphiya, Pennsilvaniay, USA). Abstract 1475.
-
,
«
»
,
,
,
,
,
.
,
,
,
.
[1-4],
.
[2]:
4.5
.
4.2
.
4.2 - 4.0
.
4.0
,
,
108
,
.
3.8
,
, ,
3.6
.
,
.
,
.
.
,
(
[2-4].
.
)
,
,
,
,
.
(
0.1M–1),
~
,
,
.
,
,
,
,
.
7.5
4–
,
.
,
,
.
,
,
,
.
,
[5].
,
,
.
,
,
[6].
,
,
,
[6].
,
,
,
[7].
,
,
(
,
),
,
,
,
-
.
,
,
«
,
»
,
,
,
.
(Asp
Lys, Asp
Arg, Glu
Lys, Arg
2Glu)
,
[8-9].
109
.
(
)
(
(
).
)
.
(
–
–
–
–
–
).
,
-
.
.
.
,
(
4.2
8.2).
,
,
.
,
.
,
,
.
2009
2- , 3-
4-
.
-
1.
: Ala
Gly
Asp; Ala, Gly
Glu; Ala, Gly, Lys
.
Asp; Ala, Gly, Lys
–
Gly; Ala,
Glu -
.
.
-
.
120
(
.
)
Merck,
UF256
(10%)
:
4:4:2,
– 5%-
(7:4:2,
Ala-Gly),
.
Finnigan LTQ FT (Thermo Electron,
110
- 130
),
-
(
)
7
.
,
(ESI).
,
(
-
).
.
2.
(
)
- Ala
Gly.
1.
1.
A-
Ala - Gly.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
(1400 , 300
Gly-Ala (1:1)
Gly-Ala (2:1)
Gly-Ala (1:2)
Gly-Ala (1:1)
Gly-Ala (2:1)
Gly-Ala (1:2)
Gly-Ala (1:1)
Gly-Ala (2:1)
Gly-Ala (1:2)
Gly-Ala (1:1)
Gly-Ala (2:1)
Gly-Ala (1:2)
Gly-Ala (1:1)
Gly-Ala (2:1)
Gly-Ala (1:2)
16.
17.
18.
19.
20.
21.
Gly-Ala (1:1)
Gly-Ala (2:1)
Gly-Ala (1:2)
Gly-Ala (1:1)
Gly-Ala (2:1)
Gly-Ala (1:2)
)
1
1
1
2
2
2
3
3
3
1
1
1
2
2
2
. H2SO4
. H2SO4
. H2SO4
. H2SO4
. H2SO4
. H2SO4
. H2SO4
. H2SO4
. H2SO4
. NaOH
. NaOH
. NaOH
. NaOH
. NaOH
. NaOH
4.5
4.5
4.5
8.5
8.5
8.5
,
,
(
.
.1
. 2).
111
300 h
104 h
O
H2N CH C OH
( < 1.5 %)
CH3
NH2-Ala-Gly-CO2H
L-Ala
NH2-Gly-Ala-CO2H
+
NH2-Gly-Gly-CO2H
NH2-Ala-Gly-CO2H
NH2-Gly-Ala-CO2H
NH2-Gly-Gly-CO2H
O
NH2-Ala-Ala-CO2H
H2N CH2 C OH
NH2-Ala-Ala-CO2H
NH2-Gly-Gly-Gly-CO2H
L-Gly
NH2-Ala-Ala-Ala-CO2H
NH2-Gly-Gly-Ala-Ala-CO2H
(1:1)
NH2-Gly-Gly-Gly-Gly-CO2H
NH2-Gly-Ala-Ala-Ala-CO2H
NH2-Gly-Gly-Ala-Ala-CO2H
NH2-Gly-(Gly)4-Ala-CO2H (?)
NH2-Gly-Ala-Ala-Ala-CO2H
NH2-Gly-Gly-Gly-Gly-CO2H
[2Ala+H]+,
[(2Ala+Gly)+H]+,
[4Gly+H]+
.
. 1.
, 1:1, 1300 ,
L-Ala - L-Gly (
,
)
NH2-Gly-Gly-(Ala)3-Ala-CO2H
NH2-Gly-(Gly)6-(Ala)2-Ala-CO2H
NH2-Gly-(Gly)4-Ala-Ala-CO2H
NH2-Gly-(Gly)5-(Ala)3-Ala-CO2H
NH2-Gly-Ala-CO2H
NH2-Gly-Gly-CO2H
NH2-Gly-(Gly)3-(Ala)2-Ala-CO2H
NH2-Gly-(Gly)9-Ala-CO2H
NH2-Gly-(Gly)2-(Ala)3-Ala-CO2H
NH2-Gly-(Gly)4-(Ala)6-Ala-CO2H
NH2-Ala-Ala-CO2H
NH2-Gly-Ala-Ala-CO2H
NH2-Gly-Gly-(Ala)4-Ala-CO2H
NH2-Gly-Gly-Ala-CO2H
NH2-Gly-(Ala)5-Ala-CO2H
O
NH2-Gly-(Gly)6-Ala-CO2H
NH2-Gly-Gly-Gly-CO2H
H2N CH C OH
CH3
NH2-Gly-(Gly)5-Ala-Ala-CO2H
NH2-Ala-Ala-Ala-CO2H
L-Ala
NH2-Gly-(Gly)4-(Ala)2-Ala-CO2H
NH2-Gly-(Gly)2-Gly-CO2H
+
NH2-Gly-(Gly)3-(Ala)3-Ala-CO2H
NH2-Gly-Gly-Gly-Ala-CO2H
NH2-Gly-Gly-Ala-Ala-CO2H
O
NH2-Gly-(Gly)2-(Ala)4-Ala-CO2H
H2N CH2 C OH
NH2-Gly-Gly-(Ala)5-Ala-CO2H
NH2-Gly-(Ala)6-Ala-CO2H
NH2-Gly-Ala-Ala-Ala-CO2H
L-Gly
NH2-Gly-(Gly)2-Gly-Ala-CO2H
(1:1)
NH2-Gly-Gly-Gly-Ala-Ala-CO2H
NH2-Gly-Gly-(Ala)2-Ala-CO2H
NH2-Gly-(Gly)5-(Ala)2-Ala-CO2H
NH2-Gly-(Gly)4-(Ala)3-Ala-CO2H
NH2-Gly-(Ala)3-Ala-CO2H
NH2-Gly-(Gly)3-(Ala)4-Ala-CO2H
NH2-Ala-(Ala)3-Ala-CO2H
[2Ala+H]+,
[(2Ala+Gly)+H]+
NH2-Gly-(Gly)2-(Ala)5-Ala-CO2H
NH2-Gly-(Gly)4-Ala-CO2H
.
NH2-Gly-Gly-(Ala)6-Ala-CO2H
NH2-Gly-(Gly)2-(Ala)2-Ala-CO2H
. 2.
300
NH2-Ala-Gly-CO2H
L-Ala - L-Gly (
, 1:1, 1300 ,
,
,
).
,
,
,
.
.1
2,
.
,
Ala-Ala-Ala
,
5)
(
,
Glu.
112
–
Ala
–
Gly
2).
– Asp
2.
2.
Gly Glu)
A-L
(Ala, Gly Asp).
(Ala,
,
,
(0 )
A
Ala, Gly, Glu (1:1:1),
4,5
. H2SO4
Ala, Gly, Glu (1:4:1),
9
. H2SO4
Ala, Gly, Asp (1:1:1),
4,5
. H2SO4
Ala, Gly, Asp (1:1:1),
9
. H2SO4
Ala, Gly, Glu (1:1:1),
1,5
. H2SO4
Ala, Gly, Glu (1:4:1),
3
. H2SO4
Ala, Gly, Asp (1:1:1),
1,5
. H2SO4
Ala, Gly, Asp (1:4:1),
3
. H2SO4
Ala, Gly, Glu (1:1:1),
3
. H2SO4
Ala, Gly, Glu (1:4:1),
6
. H2SO4
Ala, Gly, Asp (1:1:1),
3
. H2SO4
Ala, Gly, Asp (1:4:1),
6
. H2SO4
B
C
D
E
F
G
H
I
J
K
L
(
2) (
130
)
104 (A1)
)
300 (A2)
130
104 (B1)
300 (B2)
130
104 (C1)
300 (C2)
130
104 (D1)
300 (D2)
130
104 (E1)
300 (E2)
130
104 (F1)
300(F2)
130
104 (G1)
300 (G2)
130
104 (H1)
300 (H2)
104 (I1)
300 (I2)
130
104 (J1)
300 (J2)
130
104 (K1)
300 (K2)
130
104 (L1)
300 (L2)
.
. 3),
.
;(
;(
,
(
-
)
,
Glu
H2O.
(
,
–
)
,
,
,
–
Glu.
,
(
):
Glu
O
O
C
N
N
O
.
O
E (
Glu – 2
2
)
.
3.
Gly Glu
2
3-
Ala,
.
113
[M+H]+
(
[M+Na]+
.
)
2
.
.
)
Ala-Gly (Gly-Ala)
Ala-Ala
Gly-Gly
Gly-Gly-Gly
Gly-Gly-Ala
Gly-Glu
(Glu-Gly)
Ala-Ala-Gly
Ala-Gly-Ala
Gly-Ala-Ala
Ala-Glu
Glu-Ala
Ala-Ala-Ala
Gly-Gly-Glu
Gly-Gly-Ala-Ala
Ala-Gly-Glu;
Gly- Ala-Glu
Glu-Glu
Gly-Ala-Ala-Ala
Ala-Ala-Glu
Gly-Glu-Glu
Glu-Glu-Gly
Ala-Gly-Glu-Ala;
Ala-Ala-Gly-Glu
Ala-Glu-Glu;
Glu-Glu-Ala
Gly-(Gly)4-Gly
Glu-Glu-Gly-Gly
Ala-Gly-Glu-Ala-Gly
Gly-Glu-Glu-Ala;
Ala-Gly-Glu-Glu
Gly-(Gly)5-Gly
Gly-(Gly)5-Ala
147.078
161.094
133.062
190.0835
204.0995
205.08
227.06
+
+
+
+
+
+
218.1155
-
+
219.10
241.08
+
232.1315
262,1
275.137
276.12
298.10
+
+
+
+
277.10
289.153
290.13
334.12
299.11
312.12
-
+
+
+
+
347.16
-
+
348.14
-
+
361.148
391.15
404.18
405.16
427.15
+
+
+
+
418.17
432.1855
462.18
-
460.2175
-
+
463.17
476.20
498.18
+
+
477.187
533.22
499.16
+
+
Ala-Gly-Glu-Glu-Glu;
Gly-Glu-Glu-Ala-Glu
534.20
-
+
Gly-Glu-Glu-(Ala)2-Ala;
Ala-Gly-Glu-Ala-Glu-Ala
547.24
569.22
+
130.05
187.07
-
+
+
Gly-Glu-Glu-Ala-Gly;
Ala-Gly-Glu-Glu-Gly
Gly-(Gly)3-(Ala)2-Ala
Glu-Glu-Gly-Glu
Gly-Glu-Glu-Ala-Ala;
Ala-Gly-Glu-Ala-Glu
Glu-Glu-Ala-Glu
Glu-Glu-Ala-Gly-Gly-Ala;
Ala-Gly-Glu-Ala-Gly-Glu;
Gly-Glu-Glu-Ala-Ala-Gly;
Ala-Gly-Glu-Ala-Glu-Gly
-E
Gly-E
-Gly
114
Ala-E ;
-Ala
201.09
-
+
241.08
-
+
244.09
-
+
Ala-Gly-
258.11
280.09
+
(Glu+Gly2H2O)]-Ala
Glu-E
Ala-Ala-E
Gly-E -E
259.09
272.12
298.10
294.10
-
+
+
+
O
H
N
O
E'
O
E'
CO
H2N
O
2
Gly-Gly-E
CO
Gly
Gly
H2N
O
CO
E'
Gly
H2N
O
O
O
NH
E'-Gly
O
Gly-Gly-E -Gly
Ala-E -E ;
OC
301.11
312.12
+
+
E'-Ala
H2N
,
O
O
O
NH
E'-Ala
O
Ala-Gly- -Gly;
Glu- -Gly
Gly-Gly-E -Ala
Gly-Glu-E ;
Glu-E -Gly
Ala-Ala-E -Gly;
Ala-Gly- -Ala;
Ala-E -Glu-Ala;
Ala-Ala-Glu- E ;
Ala-Glu-E ;
Glu- -Ala;
-Glu-Ala
Gly-Gly-E -E
315.13
-
+
316.11
-
+
329.15
351.13
+
330.13
-
+
355,12
-
+
115
Gly-E -E -Ala;
369.14
-
+
370.12
373.14
-
+
+
383.154
-
383.16
+
387.15
409.14
388.13
400.19
401.17
-
+
423.15
+
+
423.15
-
+
426.16
-
+
Ala- -E -Gly;
OC
E'-Ala-Gly
H2N
O
O
O
NH
E'-Ala-Gly
O
Glu-E -E
Gly-Gly-E -Glu;
Glu-E -Gly-Gly
Ala-Ala-E -E ;
OC
E'-Ala-Ala
H2N
O
O
O
NH
E'-Ala-Ala
O
Gly-Glu-E -Ala;
Ala-Gly-Glu-E
Ala-Gly-E -Glu
Glu-E -Gly-Ala
Glu-E -Glu
Ala-Ala-E -Gly-Ala
Ala-Glu-E -Ala;
Glu-E -Ala-Ala
OC
E'-Ala-E'
+
H2N
O
O
O
NH
E'-Ala-E'
O
OC
E'-Ala-Gly-Gly
H2N
O
O
O
NH
E'-Ala-Gly-Gly
O
OC
H2N
O
116
E'-Gly-Glu
427.15
+
O
O
NH
E'-Gly-Glu
;
O
Glu-E -Gly-E
Gly-E -E -Ala-Ala;
Ala-E -E -Gly-Ala;
Ala-Gly-E -E -Ala;
440.18
-
+
441.16
-
+
Glu-E -Ala-Gly-Gly
Glu-E -Gly-Glu
444.17
445.16
-
+
+
Gly-Glu-E -Ala-Ala;
458.19
480.17
+
459.17
-
+
466.16
-
+
480.17
483.18
502.15
-
+
+
E'-Ala-Ala-Gly
OC
H2N
O
O
E'-Ala-Ala-Gly
NH
O
O
OC
E'-Ala-Glu
H2N
O
O
O
NH
E'-Ala-Glu
O
Ala-Glu-E -Ala-Gly;
Glu-E -Gly-Ala-Ala;
Glu-E -Ala-Ala-Gly
Ala-Glu-E -Glu;
Glu-E -Glu-Ala;
Glu-E -Ala-Glu
OC
E'-Gly-Gly-E'
H2N
O
O
O
NH
E'-Gly-Gly-E'
O
Ala-Gly- - OC
E'-Ala-Gly-Gly-Gly
H2N
O
O
O
NH
E'-Ala-Gly-Gly-Gly
O
117
OC
E'-Ala-Glu-Gly
484.17
-
494.19
-
+
497.20
519.18
+
Ala-Gly-Glu-E -E ;
Ala-Gly- -E -Glu;
Glu-E -Gly-Ala- ;
498.18
520.16
+
Gly-E -Ala-Gly-Gly-Gly
501.197
511.22
512.20
533.20
534.18
+
515.21
-
+
H2N
,
O
OC
E'-Ala-Gly-Glu
H2N
O
O
O
NH
E'-Ala-Glu-Gly
,
O
O
O
NH
E'-Ala-Gly-Glu
O
Ala-Ala-E -E - E ;
OC
E'-Ala-Ala-E'
H2N
O
O
O
NH
E'-Ala-Ala-E'
O
OC
E'-Ala-Gly-Gly-Ala
H2N
O
O
O
NH
E'-Ala-Gly-Gly-Ala
O
Gly-E -E -(Ala)2-Ala
OC
E'-Ala-Ala-Glu
+
H2N
O
O
O
NH
E'-Ala-Ala-Glu
;
O
Glu-E -Ala-Ala-E
Ala-Glu-E -Ala-Gly-Gly;
118
Glu-E -Ala-Gly-Gly-Ala;
Ala-Gly-Glu-Ala-Gly- E
Gly-Glu-E -Ala-Ala-Gly;
Glu-E -Gly-Ala-Ala-Gly
Ala-Gly-(Glu)2-E ;
Gly-Glu-Glu-Ala-E
Gly-Glu-E -(Ala)2-Ala;
Ala-Glu-E -Ala-Gly-Ala;
Glu-E -Gly-Ala-Ala-Ala
Ala-Glu-E -Glu-Ala;
Glu-E -Ala-Ala-Glu;
OC
E'-Ala-Gly-Gly-E'
516.19
-
+
529.23
541.19
+
530.21
-
+
;
537.19
-
+
541.19
-
+
551.21
-
+
555.20
-
+
569.22
-
+
572.25
-
+
H2N
O
O
O
NH
E'-Ala-Gly-Gly-E'
O
OC
E'-Ala-Glu-Gly-Gly
H2N
O
O
O
NH
E'-Ala-Glu-Gly-Gly
O
OC
E'-Ala-Ala-Gly-E'
H2N
O
O
O
NH
E'-Ala-Ala-Gly-E'
O
Glu-E -Ala-Gly-Gly- ;
Glu-E -Gly-Ala- -Gly
OC
E'-Ala-Ala-Gly-Glu
H2N
O
O
O
NH
E'-Ala-Ala-Gly-Glu
O
Gly-Glu-E -Ala-Ala-E ;
Ala-Glu-E -Ala-Gly-E ;
Glu-E -Gly-Ala-Ala-E ;
Glu-E -Gly-Ala-E -Ala
Glu-E -Ala-Gly-Gly-Ala-Gly
;
119
OC
E'-Ala-Ala-Glu-Ala
583.24
-
+
587.23
-
+
591.20
595.20
-
+
609.21
631.19
+
613.21
-
+
626.24
-
+
644.2565
-
+
1(
187.07
-
H2N
O
O
O
NH
E'-Ala-Ala-Glu-Ala
O
Glu-E -Ala-Ala-Gly-Glu;
Ala-Gly-Glu-Ala-Gly- E ;
Gly-Glu-E -Ala-Ala-Glu;
Ala-Glu-E -Ala-Gly-Glu;
Glu-E -Gly-Ala-Ala-Glu
Ala-Gly- - - OC
E'-Ala-Glu-Gly-Gly-E'
+
H2N
O
O
NH
O
E'-Ala-Glu-Gly-Gly-E'
O
Ala-Gly-Glu-E -E -E ;
Glu-E -Gly-Ala-E -E
OC
E'-Ala-Glu-Gly-Gly-Glu
H2N
O
O
O
NH
E'-Ala-Glu-Gly-Gly-Glu
O
E'-Ala-Ala-Gly-Glu-Gly
OC
H2N
O
O
O
NH
E'-Ala-Ala-Gly-Glu-Gly
;
Glu-E -Ala-Gly-Gly-Ala-E
O
Glu-E -Ala-Ala-Gly-GluGly;
Glu-E -Ala-Gly-Gly-Ala-Glu
O
O
OH
H2N
NH
O
120
)
+
O
O
244.09
-
+
258.11
-
+
315,13
-
+
316.11
-
+
355.12
-
+
373.138
-
+
387.15
-
+
426.16
-
+
444.17
-
+
Gly
H2N
NH
O
O
O
Ala
H2N
NH
O
O
O
Gly-Ala
H2N
NH
O
O
O
Ala-Gly
H2N
NH
O
O
O
Glu
H2N
NH
O
O
O
Gly-E'
H2N
NH
O
O
O
Gly-Glu
H2N
NH
O
O
O
Glu-Gly
H2N
NH
O
O
O
Glu-Ala
H2N
NH
O
O
O
Gly-Ala-E'
H2N
NH
O
O
O
Gly-Ala-Glu
H2N
NH
O
121
O
458.19
-
+
466.16
-
+
484.17
-
+
515.21
-
+
O
Glu-Ala-Ala
H2N
NH
O
O
O
Gly-E'-E'
H2N
NH
O
O
O
Gly-E'-Glu
H2N
NH
O
O
O
Glu-Ala-Ala-Gly
H2N
NH
O
O
O
Gly-Ala-Glu-Ala
H2N
NH
O
529.23
O
+
O
Glu-Ala-Ala-Ala
H2N
NH
O
O
O
577.19
-
+
595.20
-
+
613.21
-
+
2(
259.095
-
+
330.13
-
+
370.12
-
+
Gly-E'-E'-E'
H2N
NH
O
O
O
Gly-E'-Glu-E'
H2N
NH
O
O
O
Gly-E'-Glu-Glu
H2N
NH
O
)
O
(CH2)2-COOH
H2N
NH
HOOC-(CH2)2
O
-E
O
(CH2)2-CO-Ala
H2N
NH
HOOC-(CH2)2
O
122
O
(CH2)2-CO-E'
H2N
NH
HOOC-(CH2)2
O
388.135
-
+
401.17
-
+
441.16
-
+
481.16
-
?
592.18
-
+
115.05
-
+
129.067
-
+
143.083
259.095
201.089
187.073
-
+
+
+
O
(CH2)2-CO-Glu
H2N
NH
HOOC-(CH2)2
O
O
(CH2)2-CO-Ala-Ala
H2N
NH
HOOC-(CH2)2
O
O
(CH2)2-CO-Ala-E'
H2N
NH
HOOC-(CH2)2
O
O
(CH2)2-CO-E'-E'
H2N
NH
HOOC-(CH2)2
O
O
(CH2)2-CO-E'-E'-E'
H2N
NH
HOOC-(CH2)2
O
(2 Gly - 2H2O)
O
HN
NH2
O
(Ala + Gly - 2H2O)
O
HN
NH2
H3C
O
(2 Ala - 2H2O)
(2 Glu - 2H2O)
(Ala + Glu - 2H2O)
(Glu + Gly - 2H2O)
HPLC
,
Glu
.
123
,
Asp
Lys
Ala
Glu
Gly
2
–
Lys.
4.
(Ala, Gly, Lys
4.
M-X
(Ala, Gly, Lys
Glu)
Asp).
,
,
(0 )
M
N
O
P
Q
R
S
T
U
V
W
X
Ala, Gly. Asp, Lys (1:1:1:1), 2
. H2SO4
Ala, Gly. Asp, Lys (1:1:1:1), 4
. H2SO4
Ala, Gly. Asp, Lys (1:1:1:1), 6
. H2SO4
Ala, Gly. Asp, Lys (1:2:1:1),
2.5
. H2SO4
Ala, Gly. Asp, Lys (1:2:1:1), 5
. H2SO4
Ala, Gly. Asp, Lys (1:2:1:1),
7.5
. H2SO4
Ala, Gly. Glu, Lys (1:1:1:1), 2
. H2SO4
Ala, Gly. Glu, Lys (1:1:1:1), 4
. H2SO4
Ala, Gly. Glu, Lys (1:1:1:1), 6
. H2SO4
Ala, Gly. Glu, Lys (1:2:1:1),
2.5
. H2SO4
Ala, Gly. Glu, Lys (1:2:1:1), 5
. H2SO4
Ala, Gly. Glu, Lys (1:2:1:1),
7.5
. H2SO4
(
1
2
12
;(
;(
130
)
104 (M1)
)
300 (M2)
130
104 (N1)
300 (N2)
130
104 (O1)
300 (O2)
130
104 (P1)
300 (P2)
130
104 (Q1)
300 (Q2)
130
104 (R1)
300 (R2)
130
104 (S1)
300 (S2)
130
104 (T1)
300 (T2)
130
104 (U1)
300 (U2)
130
104 (V1)
300 (V2)
130
104 (W1)
300 (W2)
130
104 (X1)
300 (X2)
)
.
3.
(
).
(
(10-3
)
F8_p
3
30
10
10-2
.
F8
124
,
,
-2
. 5).
2
F9_p).
.
.
F9
(
.
5.
F8
1,3 ±0,2 -5
F9
0,5±0,1 -5
4-5
0,6±0,1 -5
)
12
,
),
(
,
,
Glu
Asp.
,
–
2,
.
-
–
,
Glu,
.
,
[9]
,
Asp (
Glu)
Ala
Gly.
,
.
,
F8_p
,
F9_p
.
,
,
[10].
,
.
,
[10]
,
.
–
,
,
,
UNICO 2800 (
- (
),
,
-,
,
.
.
-
)
:
),
.
– 340
510
(
24
. 3).
46%,
4
,
6
).
125
. 3.
–
,
.
-4 ;
2-6 ;
1
3 – 24 .
.
:
1.
,
Ala
Gly
,
1-3
.
HPLC
.
2.
.
,
Ala, Gly
Glu/
:
Asp
Ala
Asp,
,
Glu,
,
,
.
,
Gly
–
E2 (Ala, Gly
3.
.
Glu
1:1:1, 1.5
. H2SO4)
,
-
)
,
,
Glu
H2O.
–
)
,
,
,
–
4.
Glu.
.
,
,
.
5.
,
126
12
(
),
,
,
Glu.
.
6.
,
,
.
,
,
.
2- , 3-
4-
,
,
Gly
Asp
(130
1:1:1
.
Ala, Gly
–
1:4:1
Ala, Gly, Asp Lys
1:1:1:1 1:2:1:1
Lys
Glu
1:1:1:1
1:1:1
.
1:2:1:1
.
.
E2 (Ala, Gly
. H2SO4)
, 300
)
Ala,
1:4:1
Ala, Gly, Glu
–
.
(Ala
Gly)
Glu
1:1:1, 1.5
,
(
-
)
Glu
,
,
H2O.
(
–
)
,
,
,
–
Glu.
).
2
.
,
,
.
12
,
(
),
,
,
Glu.
.
1
.
.»
(
572009 .,
, 11-12
2009 .,
,
),
(31
,
,
–4
).
127
1.
.
- .:
, 2001. 253 .
2. R. Stern† and M. J. Jedrzejas, Carbohydrate Polymers at the Center of Life’s Origins:
The Importance of Molecular Processivity. // Chem. Rev. 2008, 108, 5061–5085
3. H. R. Kricheldorf. Polypeptides and 100 Years of Chemistry of a-Amino Acid NCarboxyanhydrides. // Angew. Chem. Int. Ed. (2006), 45, 5752 – 5784.
4. A. Commeyras, H. Collet, L. Boiteau, J. Taillades, O. Vandenabeele-Trambouze, H.
Collet, J-P. Biron, R. Plasson, L. Mion, O. Lagrille, H. Martin, F. Selsis, M. Dobrijevic,
Prebiotic synthesis of sequential peptides on the Hadean beach by a molecular engine working
with nitrogen oxides as energy sources. // Polym. Int. (2002), V. 51, P.661-665
5. Corey M.J., Corey E. // Proc. Natl. Acad. Sci. USA, 1996, V. 93, P. 11428
6. Lahav N., White D., Chang S. // Science, 1978, V. 201, P. 67
7. Flegmann A.W., Tattersall R. // J. Mol. Evol., 1979, V. 12, P. 349
8. Varfolomeev S.D., Kinetic models of the prebiological evolution of macromolecules.
Thermocycle as the motive force of the process. // Mendeleev Commun., 2007, V. 17, N 1, pp. 79.
9.
. .,
. .,
. .,
. .,
. .,
. .,
.
. //
«
.»
.
.
.:
.:
«
», 2008, . 57-78.
10.
,
.
,
.
,
2007142696
21.11.2007
«
».
23.03.2009 .
128
K/NA
:
:
.
,
.
.
,
.
,
.
.
.
,
,
,
(
).
,
,
.
,
.
.
.
.
.
,
.
,
,
,
,
,
,
,
,
.
,
1)
,
, 2)
,
, 4)
.
, 3)
,
,
,
,
.
,
,
.
,
,
Na
,
K,
.
,
,
,
,
,
.
–
1)
,
, 2)
, 3)
, 4)
,
,
Corning-410
(
)
ANOVA.
4)
.
.
129
K/Na
,
,
,
.
,
,
Na+
,
( .
4
.)
, .
, .
– 0.16
465
K/Na
,
,
.
,
0.03 ± 0.006 (
,
1. K/Na
–
,
,
. 1).
.
K/Na
0.025
0.025
0.028
0.022
0.027
0.057
0.056
0.034±0.006
,
Na
(
,
),
(
,
,
)
188%
2),
,
,
108
203
0.029±0.001.
K/Na
K/Na.
,
+
Na (
.
,
2. K/Na
Wistar
Perca fluviatilis
Coregonus
Squalus acanthias
Acipenser,
Lampetra fluviatilis
n
10
10
10
9
15
50
10
19
12
11
K/Na
0.028
0.03
0.028
0.027
0.037
0.031
0.028
0.027
0.020
0.032
10
0.029
0.029±0.001
(
Na+
3250%
14,4
K/Na
.
,
0.034±0.006
130
468
(
. 1).
. 3),
3. K/Na
Pecten islandicus
Mytilus
galloprovincialis
n
20
12
K/Na
0.032
0.028
6
0.033
14
0.028
11
18
0.034
0.043
Unio pictorium
Margaritifera
margaritifera
Paralithodes camtschatica
Labellula quadrimaculata
0.033±0.002
, Na
[
,
(
, 2005].
.4)
,
.
4.
,
,
.
Na
*
176.5
3000
17
290
0.8
17
17.1
0.047
1
.*
, 2005, (
. 16).
,
,
,
,
,
.
.
,
,
Mg2+
, 1971; Pestka, 1968].
[
+
,
Na+
,
,
,
.
–
,
.
,
,
,
.
4
,
,
.
K/Na
,
.
,
.
,
K/Na
,
.
+
Na+
131
.
,
+
,
+
Na
,
+
–
.
.
,
,
+
1.
Na+
(
+
,
. 5).
,
K/Na
(
,
(
),
. 5)
5. K/Na
,
,
,
,
K/Na
0.047
0.034±0.006
0.029±0.001
0.033±0.002
0.021
0.021
6.29
2.77
1.01
1.35
,
,
,
, R. temporaria
,
, Littorina saxatilis
, Unio tentaculata
n–
Na
0.16 465
108 203
14.4 468
n
7
166
69
8
12
13
8
10
6
,
,
,
Na+.
+
,
),
,
,
,
,
.
K/Na
2.
4
4,
2
[
,
, 2008]
–
,
.
,
Na
.
K/Na
Lactobacillus fermentum
94
,
.
,
,
,
.
,
,
,
,
,
.
K/Na
,
.
132
,
,
,
Na
,
.
Lactobacillus fermentum 94 .
,
,
–
,
,
,
.
.
5
1
48
37
.
,
0.1
4
.
,
«Sartorius» 4413
).
8
,
105
,
30
HNO3
90°
1
.
.
.
,
.
.
Corning – 410 (
Na
).
M±m,
ANOVA.
,
Lactobacillus fermentum 94
2.2±0.1.
,
K/Na
K+
Na
4,
0.25.
Na+.
2%
,
,
+
800%.
+
,
,
,
,
.
+
,
,
.
,
.
,
.
.
.
.
,
.
:
,
,
,
+
K/Na
2.2±0.1,
2.77±0.1,
,
,
0.03.
/Na+
,
,
+
1.
,
,
/Na+
,
,
.
133
K
Na,
+
K
.
+
Na+
,
.
.
+
K,
,
,
K+.
,
.
,
,
.
+
,
,
.
.
(2007),
,
«
,
,
».
,
,
.
,
.
134
,
K+
,
,
(
)
,
:
:
.
,
.
.
.
,
.
,
.
.
,
.
,
.
.
,
,
.
-
(
,
),
[
,
.
.
. 2001].
,
,
,
,
[
.
.,
, 2007, 417, 265; Kolesnikov M.P.
et. al., Origins Life Evol. Biosph., 2008, 38, 243].
», .
,
(
)
.
4
3
N
5
N
R
H
N
R
N
7
2
N
N
1
8
,
NH
O
; R=CH3 –
R=H –
,
O
N
6
,
,
.
h
+ Pi
+ H2 O
135
,
[Heinz B. and Ried W., BioSystems., 1981, 14, 33;
.
.
., 2001, 37, 385],
,
,
,
.
.,
,
,
.
,
.
.
(
)
.
.
1.
,
.
.
2.
,
.
.
,
),
,
,«
»
,
,
.
.
,
2000
-150
,
.
2000
“
” (
-02-
«
).
»
«
»(
),
,
.
«
»
“
”(
» (
).
).
,
,
,
.
,
.
,
,
8:3:1).
(
(
)
.
,
,
(
136
.1).
max
= 525
,
max
).
,
max
(
. 1.
= 440
. 2).
= 450
,
(
= 340
max
,
.
. 2.
1–
2–
3–
340
375
450
137
. 3.
1–
2–
525
440
,
525
,
,
290
.
260, 375
340
,
,
450
,
440
,
3).
(77 ).
.
,
20
,
(
. 4).
,
.
,
(
138
).
.
. 4.
,
.
5 (
,
).
(
),
260, 375 455
27100, 10400 12200 .
,
,
1
-1
,
.
,
,
.
. 5.1
(
20
340
,
,
.
).
–
,
,
.
,
,
,
139
,
.
,
.
.
,
NH2CHCH3COOH.
NH2CH2COOH (
,
)
,
.
,
,
,
(8:3:1),
,
.
,
(
,
).
500
6
350
.
6% (
,
),
450
15%.
,
,
,
7.
(
340
),
.
,
UV-A
,
.
(
. 8).
,
,
.
140
. 6.
,
,
,
8:3:1).
(
350
.
. 7.
.
.
,
–
,
40
.
141
. 8.
(
4)
(
:1–
.
440
340
;2–
1, 2, 3)
375
;3–
450
(8:3:1).
:4–
;
.
,
.
,
(
)
(
).
,
,
.
,
(
,
,
,
,
-
)
,
.
142
:
:
.
.
,
.
.
,
.
).
,
,
.
.
,
.
:
,
,
.
.
.
,
,
),
,
.
,
.
,
,
,
.
,
,
.
,
,
.
(
CH4, NH3)
,
.
«
».
,
.
,
.
.
,
.
.
.
143
,
,
.(
. 1).
hv
+ H2O
+ Pi
M+N
S
t
+
H2O + MN
-
MN
MN + Q
H2O + MNQ
S
t
MNQ
MNQ + QP
H2O + MNQP
,
.
,
,
.
,
,
.
-
,
,
.
.
.
,
,
,
,
.
,
,
.
.
.
,
.
.
,
,
,
.
:
.(
144
. 2).
,
,
.
,
,
,
.
,
.
,
.
.
.
.
.
,
.
,
,
.
,
,
,
,
.
,
,
,
,
.
,
,
,
,
,
,
.
:
E.M. Galimov/ Intern.Journal of Molecular Sciences,v.10, p.2019-2030, 2009,
(
.
.
)
.
145
:
:
)
,
.
,
.
,
,
+200° ,
.
-100
,
2
,
12,
,
,
,
"
"
,
–
.
,
.
,
(
»
«
)
,
.
-
,
,
,
.
,
.
,
,
.
,
,
,
,
),
,
.
,
(
:
5:5:1)
,
(
(60°
=8.0).
,
:
-1 : 3)
,
,
146
80°
130° .
,
,
,
.
.
(
(
)
)
.
,
,
.
(
)
.
.
(
-
)
: 1-
:
5:1:1.
:
,
:
- 7:3,
,
(
).
,
,
.
195
(
)
60°
254
(
).
=8.0
–
(1 :3).
60°
150
(
.
),
.
-
–
:
+
.
?) +
(
,
,
,
(
10, 50
100
,
).
(
,
(
.
- 1:3
–
3).
60
147
130° .
60° –
2 exp ((T2 – T1)/10)
,
,
.
27 = 128
.
,
,
)
( ,
,
,
).
(
,
148
(
.
).
(100
(
,
(
,
,
(
)
)
),
–0
)
.
.
. 4)
1
2
100
3
100
0
4
100
. 2.
.
(
)
,
100
.
–(
),
)
..
(
(
)
(
)
. 5
,
(
.
)
.5
,
,
1-2 %.
149
)
)
. 5.
(100
+
+
).
,
-
.
,
.
.
,
,
.
,
,
,
,
.
.
150
:
:
:
.
,
.
.
,
.
.
,
.
,
.
,
.
.
.
,
,
,
,
.
.
,
, [1-6].
[7]
,
,
.
,
.
[7]
,
(
).
.
,
.
,
,
,
,
,
,
.
,
151
,
,
,
.
,
,
.
,
,
.
)
.
,
,
,
.
.
,
.
,
,
.
(
(
).
,
),
,
,
,
,
.
(
)
,
),
.
.
.
,
,
.
.
.
.
,
.
[8,9],
.
,
[10]
,
,
152
(
.1).
. 1.
.
i,j.
(
A, B, C
,
)
D,
.
2
.
3
CD
AB
,
2
A
(C
B
D
3).
4
5.
,
6
7
.
,
AB
AB
CD ,
CD
(
8.
)
,
9
2
AB
3.
CD,
10,
.
AB
CD
1
.
)
AB,
CD.
,
,
,
.
,
AB
,
,
CD.
,
–
.
,
.
1,2,
,
1,3
.,
:
153
dn1
dt
dn2
dt
dn3
dt
dn4
dt
dn5
dt
dn6
dt
dn7
dt
dn8
dt
dn9
dt
dn10
dt
n
n
1,2 1
n ,
n
1,3 1
9,1 9
10,1 10
n ,
n
2,4 2
n
3,5 3
1,2 1
n ,
1,3 1
n ,
n
4,6 4
3,5 3
n
5,7 5
n
6,8 6
n
7,8 7
2,4 2
n ,
n ,
4,6 4
n ,
5,7 5
n
n
8,9 8
n ,
n
8,10 8
6,8 6
7,8 7
n ,
n
8,9 8
9,1 9
n .
n
8,10 8
10,1 10
nk
(
),
k
nk(t = 0) = 0
k
,
.
n1(t = 0) = 1
k
1
,
.
8
(
(9,10)
.
1,
)
:
n8
n8
8,9
n9
n10
8,10
9,1
.
10,1
AB
CD
n9
n10
8,9
10,1
8,10
9,1
.
,
n9 n10
10
9
.
,
(
,
10 (
2
10,1
9,1
9
8,9
2
8,10
),
,
,
),
AB
CD.
i,j
,
,
.
154
(
.
. 2)
.
. 3
8,9
8,10
,
9,1
,
10,1 .
AB
,
,
,
,
CD.
.
,
1
2
4
6
8
–
9
.
CD,
,
,
. 4.
. 2.
k
(nk)
i,j.
. 3.
k
(nk)
,
8,9
8,10
9,1
10,1
155
. 4.
k
(nk)
,
8,9
8,10
10,1 .
9,1
,
(
A, B, C
,
D)
,
,
,
.
,
[7].
.
.
.
.
,
.
H (n, t ) (ln 2)
1
nk ln nk-1
k
nk
,
1,
nk –
k
H(n,t)
,
156
2
3.
.
. 5
. 5.
,
8,9
i,j
8,10
9,1
H(n,t)
. 3),
10,1 (
.
–
. 2).
n1 = 1,
(k
1) = 0.
nk
H(n,t = 0) = 0.
( . 2),
,
.5
,
,
,
,
.
.
H(n,t) = const > 0.
,
nk
nk (
)
,
:
n1
.
.5
3): n9
nk (k
(
9) .
.
,
n9
H(n,t)
.
AB
,
.
,
AB
,
.
AB (
,
,
)
.
AB
.
,
[11].
,
.
.
.
,
,
H(n,t) = const > 0 (!)
(A·B·C·D) (AB·AB)
(AB·AB)
(A·B·C·D)
nk > 0.
,
,
,
,
,
,
,
,
,
.
157
n9/n10,
,
,
,
(
).
,
,
.
,
,
(
.).
,
,
,
.
1. Page R.D.M., Holmes E.S. Molecular evolution: a phylogenetic approach. Oxford,
Blackwell science, 1998, 352 p.
2. Kauffman S.A. The origin of order: self-organization and selection in evolution.
Oxford, Oxford University press, 1993, 734 p.
3. Smith J.M., Szathmary E. The origin of life. N.Y., Oxford University press. 1999,
180 p.
4. Babloyantz A. Molecules, dynamics and life. An introduction to self-organization of
matter. N.Y., Wiley-Interscience, 1986, 345 p.
5. Kimura M. The neutral theory of molecular evolution. Cambridge, Cambridge
University Press, 1983, 367 p.
6. Behe M.J. Darwin’s black box. The biochemical challenge to evolution. N.Y., Simon
& Shuster, 1998, 307 p.
7.
.
:
.
.
,
, 2001, 256 .
8.
.
.
,
, 1961, 152 . [Bohr N. Atomic physics and human knowledge. New
York, John Wiley & Sons, 1958, 101p.]
9.
.
.
,
, 1971, . 2, 676 c.
10.
.,
.
:
,
.
,
, 2006,
480 .
11.
.
.
, 2007, . , 1, . 89-93.
158
–
:
.
.
.
,
.
,
.
,
(
)
.
.
2
, Chl (1),
Cu (3), Sn (4), Zn (5), Cd (6)),
.
L.).,
2
2
, MT
(M = Al (7), Zn (8)),
M
(M = Cr (2),
(Urtica dioica
( .
Chl
,
).
–
.
.
2
,
(
, 1 : 1).
.
(pH 8.5),
(L 40/100)
10
(«
»,
),
200
1-8.
,
.
0.2
2
(150
2
)
1-8
2
. 1.
2
2
2
2
2
1
2
2
Mg-, Al-, Zn-
2.
(
2
Cd-
(
1-8
ln[ 2 2] – t.
N
1 .
.
1, 3, 5, 7, 8).
.
90%)
(60(
1
)
,
.
2
1, 2, 4, 6,
2
Mg, Cr, Zn
2
2
Sn.
,
.
159
.
,
2
-
(
1,2-
-3,5-
.
(
-
)
2
2.
2
1-3, 7
,
(
a = 0.93
Cu1,
,
.
8.5)
kef·105,
[Cat]·10 ,
kobs·102,
-1
-1
2
2-6
(pH
2
-1
kef·105,
2232
41
4
126
13
34
576
622
1.18
2.27
2.27
4.35
0.60
1.11
4.25
5.25
N,
-1
62.0
1.14
0.12
3.52
0.38
0.94
16.0
17.3
0.62
1.50
0.13
3.87
0.39
0.97
0.24
0.26
1.0
132
111
110
103
103
1.5
1.5
1
2
3
4
5
6
7
8
3
. 2).
1.
7-8,
5
2
(a).
kobs·102,
-1
-1
-1
N,
-1
4248
62
74
142
21
38
10188
12600
118
1.72
2.05
3.95
0.58
1.08
283
350
1.9
1.5
18.5
1.1
1.6
1.1
17.7
20.2
2.
1-3, 7
2
.
2
kef. 105,
a,
1
2
3
7
,
a
-1
0.23
3.1±0.2
0.57
1.92
2.8±0.1
2.1±0.1
0.95
4.3±0.1
2.3
7.87
2.0±0.1
6.1±0.4
0.93
16±2
2.3
7.73
4.5±0.2
4.2±0.2
0.45
1.1±0.1
0.95
2.34
1.5±0.1
3.3±0.2
2.3
3
.
3
.
,
.
Cr-
,
2.
a.
2
a = 7.87
.
7
160
2
6.1·10-5
-1
(
2.34
. 2).
a
0.45
7
.
,
a = 0.95
(
. 1).
. 1.
hl 1
.
Al
7
(
,
).
.
,
,
.
2
.
2
,
(
) -
,
)
–
,
.
,
,
(
3·10-5
,2
,
. 2).
,
.
161
140
120
So/S
100
80
60
40
20
0
0
0,001
0,002
0,003
0,004
0,005
0,006
[NADP],
. 2.
.
1 (a = 0.063
)
. 3).
.
.
80
2
162
1 (a = 0.015
. 4).
2(
)
1.7
1
1.00
1.6
0.98
1.5
0.94
1.4
D/D0
0.96
D/D0
2
0.92
1.3
0.90
1.2
0.88
1.1
1
0.86
2
1.0
0.84
0
10
20
30
40
50
60
70
0.9
0
t,
10
20
30
40
50
60
70
80
t,
. 3.
(2)
(1)
(1)
2
2.
. 4.
(2)
2
2
2.
2
.
(
),
.
,
2
2
,
2
–
–
2
in vitro
.
.
–
.
(
. 4),
.
.
–
77
,
.
.
–
0.23, 0.57
) (Fluka), 2,3,9,10,16,17,23,24( . 5)
)).
0.009, 0.016
1.92
.
–
0.125
(2,6-
(
(
.
),
.
163
RO
RO
OR
N
N
N
N M N
N
N
N
N
N
N
N M N
N
N
N
RO
RO
RO
OR
RO
OR
OR
OR
OR
OR
RO
H3C
R=
H3C
N
RO
N
OR
N
N M N
N
N
N
RO
M = HH
M = Zn
OR
OR
RO
. 5.
.
), KSV (
Joyce Loebl
SnO2-
)
.
(SnO2
),
–
0,3
2
.
20
.
–
.
.
,
,
103
(RH) (
,
,
107
). SnO2
0,1
KCl.
) (Sigma)
(10-6 )
(
;
+4
,
Shimadzu
.
UV-250,
Shimadzu 5300.
,
GAUSSIAN 03.
,
1:4, 2:3, 3:2, 4:1.
,
.
,
.
,
,
,
(
164
. 6).
. 7.
RH = 10
80
0,4
0,3
0,2
0,1
6
2
60
,
RH = 10
675 714
300
400
500
600
800
704
0
300
400
500
600
700
350
0,15
RH = 10
800
734
698
0,10
0,05
20
0,4
0,3
0,2
0,1
0
0
20
40
100 %
60
80
H2
100
,
300
400
354
500
600
700
800
714
2
300
400
500
600
700
800
%
2
SnO2
.
. 7.
,
2
(
(1 – 100%
-5
2
675
)
(
1
. 6.
,[
700
668
1
4
20
)
351
5
4
40
2
354
] = 10
= 15
),
; 2 – 80
.% 2
(
2
-
,
/ 20
.%
),
[
] = 10-6
).
)
L.
(0,05
) KCl,
.
.
,
.
,
,
,
,
.
,
1,
.
. 8.
, LUMO (
1)
.8
.
. 8.
,
(
1)
165
.
)
(
1),
,
,
.
(
1,
,
).
3.
2,4.10-4
(
,
1
2
3
4
Co/1,0
Fe1,3
Cu/1,5
Mg1,7
). Uph –
,
, Iph –
–
,
–
,
Uph
Iph
Uph
Iph
Uph
Iph
Uph
Iph
62
126
165
196
0,4
1,2
3,5
5,8
76
137
175
205
0,7
1,2
3,9
6,3
52
111
152
175
0,3
0,7
2,9
4,9
48
105
147
168
0,2
0,6
2,7
4,7
.
(
–
12%
).
.
(
,
)
5,6%.
(
,
,
,
)
.
2
(
)
50
.
5%
5
2
10
,
50
.
,
,
.
,
,
.
,
,
,
.
4,5
)
(10-3
500
1000
.
5
3
.
,
.
166
.
.
-
",
.
.
.
2009
,
,
(
,
.
)
,
,
,
,
.
.
4
.
167
:
.
,
.
:
.
,
.
.
,
.
,
.
,
.
,
.
,
.
.
2009
.
,
,
[AO -––H +]
:
.
,
,
,
.
,
,
,
(
(
)
4
-
)
-
+
+
,
),
.
,
-
[A
R< 0,01M (
,
+
]•
0,1
,
R
),
[A
-
+
R ..
]•
,
,
–
.
,
,
168
(
)
1.
1.
,
(Flu (
,
,
,
)+h
(Flu)*
,
Flu•+ + e–)
.
(
),
(
).
( lectron catch)
(
)
.
+
(
AO -––H
)
+
(
): e +
(
H
(
.
)•
(
)– + H•.
,
.
).
,
,
AO -––H +,
,
.
169
,
.
pK
:e + AO ––H +
[AO ––H•]
•
H (g = 2.0023, A = 50.21
),
. ( .1)
AO– + H•
1
1
*
x0.75
2
3
*
4
*
2
*
4
3
.
. 1.
,
(240
77
(Trp)
400
)
2 W.
200 W. 1- 0.5N H2SO4 (pH= 0.8); 2- 0.5M NaH2PO4 (pH= 4.1); 3- 0.5M
H3BO3 (pH= 9.0); 4- 0.5M HCl (pH= 0.6) (
).
,
.
,
,
(77 )
AOH HCl (H3O+), H2SO4(H3O+, HS
,
4
-
), H2
4
-
, H3BO3
(
0,1–1,0
,
,
)
,
),
(240
400
,
),
R.
,
,
pK . (
,
(
170
. 2).
).
,
B
A
C
1
2
3
3000
3300
3600
. 2.
3000
3300
3600
3640
3650
3660
3670
3680
,
Trp
(1 )
D2O ( ).
.2
D2O (
)
(pH=4.5); 3- 0.5M H3BO3 (pH=8.6)
: 1- 0.5
( )
H2SO4 (pH=1.1); 2- 0.5M NaH2PO4
H/D
30
77
7
H/D
.
,
[H2
4
-
]•
[D2PO4]•,
H
D.
R
pK ,
pK
(
H2PO4
. 1,3).
-
-
HSO4
H3BO3
1.2
Double integral, a.u.
1.0
0.8
0.6
0.4
0.2
0.0
0
1
2
3
4
5
6
7
8
9
10
11
12
pH
. 3.
.
,
AO H,
.
,
pH
,
.
,
171
-
+
––H
pK (
. 3),
,
(
)
,
(
1).
.
,
(H2
4
-
pK
(
7.21)
(
9.24)
pH,
AO -––H +:(
.
H 2 PO 4 , HPO 42 , H 2 SO4 , HSO4
2.8
1.92),
. 3)
B OH 4 ,
HOX n )
,(
,
,
. 1.
HOX n
HOX
n 1
HOX n
,
HOX
n 1
(
,
HOX
)
n
HOX
.1(
n 1
.
,
,
,
).
MP2
Gaussian 03
aug-cc-pVDZ.
.
. 4.
,
,
(
,
)
2
: H 2 PO 4 , HPO 4 , H 2 SO4 , HSO4
B OH 4 .
.
,
»
.
pK
2
4
H 2 SO4 - HSO4 - H 2 PO 4 - HPO - B OH 4 ).
172
,
«
»
(
0,79
–
).
,
(
),
(
,
4,5
).
–
( lectron
relay)
.
,
,
,
)
.
D
).
A (
,
,
,
,
.
.
(
).
,
,
,
,
,
,
.
:
.
+
(
AO -––H
)
+
(
): e +
(
H
(
.
)•
(
)– + H•.
,
.
).
,
,
AO -––H +,
,
.
,
.
pK
:e + AO ––H +
[AO ––H•]
H• (g = 2.0023, A = 50.21
),
. ( .1)
,
.
AO– + H•
R
[AO–H]•
,
.
,
R
R
173
,
R(
.
[AO–H]•
,
,
R• (
,
),
1,
.3, 5,6, 7).
,
(
. 5,7).
2
1
1.0
3
0.8
IH/IH(max)
0.6
0.4
0.2
0.0
0
1
2
3
4
5
6
7
8
9
10
11
12
13
pH
. 5.
R
,
( >240nm, >320
77 ( - ,
HSO4-(1); H2PO4- (2)
- NO2,
-VO
H3BO3 (3)
(2+)
,
) 0.5
).
.
,
-
0,1
,
77
1,4-1,7
,
(
)(
0,01
5,0
5, 6).
,
R,
0,01 ,
,
0,1
,
(
174
.5,6).
,
0.6
3350
0.4
3400
3450
3500
S, a.u.
,
0.2
0.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
[Pi], M
. 6.
NO2 ( )
( )
(
+ Pi
Trp+Pi+KNO3
). (
77 ,
NO2.
– 0.5
KNO3 – 0.01
Trp
-
= 5.0.
: Trp - 5·10-4, Pi
).
NO2
Trp
(
= 5.0,
(
KNO3
)
).
Tsp(0.005M)+Thy(0.03M)+Pi(0.5M)
15000
pH=4
pH=6.7
pH=8.7
10000
5000
0
-5000
-10000
-15000
3300
3350
3400
3450
3500
3550
Magnetic field, G
. 7.
(0.03M)
0.5
(0.005M)
8
.
( >340
)
),
77 .
175
,
( 4
(
,
)
OH, NH, CH),
,
.
,
[H+]
,
.
.
2009 .
,
,
-
-
, . 428,
+
4,
. 474–479
2009
O. S. Nedelina*, O. N. Brzhevskaya, E. N. Degtyarev, A. V. Zubkov
Chapter 29. “Dissociative attachment of low-energy electrons (below ionization or
electronic excitation thresholda) in frozen aqueous phosphate solutions”
Monomers, Oligomers, Polymers, Composites and Nanocomposites Research: Synthesis,
Properties and Applications
Nova Science 2009
1
p48
176
2009
:
:
.
,
.
.
.
,
.
,
.
.
1.
.
,
,
.
,
–
,
.
.
,
,
.
?
,
,
,
.
.
–
,
,
.
,
?
,
.
,
,
,
.
.
,
.
1.
,
,
.
,
.
.
2.
,
,
,
.
,
,
,
,
.
.
177
,
,
.
,
.
.
.
.
.
3.
,
,
,
,
.
.
.
,
,
.
,
.
,
,
.
4.
,
,
.
–
,
.
.
.
,
,
,
,
.
.
5.
,
,
.
6.
,
,
.
.
,
(
),
«
«
».
,
.
.
»
,
.
.
7.
.
,
.
,
,
,
.
.
,
,
,
,
,
.
,
,
.
,
,
.
178
,
,
,
.
2.
,
,
.
,
.
(
.
,
,
.
).
,
,
.
,
,
,
,
.
,
).
,
,
–
«
».
.
.
,
,
.
–
,
.
.
,
,
.
,
,
(
),
,
,
.
.
,
.
,
,
,
.
,
,
,
,
.
.
,
,
.
.
179
3.
,
,
.
,
,
.
–
.
,
,
,
.
,
.
,
,
,
.
(
)
.
,
,
.
,
,
,
.
,
.
,
.
,
.
,
,
.
,
,
.
.
,
,
.
,
.
,
.
,
.
,
,
,
.
,
.
.
180
,
,
.
–
?
,
.
,
.
.
,
(
),
,
.
,
,
.
.
,
.
,
,
,
.
,
,
,
.
.
,
,
,
.
4.
,
,
.
4.1.
C1-C2
. 1.
0.1 Å.
C2
C1-C2
C16-C17
C17-H34
C16-C17-H34
.
181
4
16
x 10
14
12
10
8
6
4
2
0
0
. 2.
1
2
3
4
5
6
7
,
8
C16-C17
,
.
C17-H34
C17-H34
C16-
.
C-C
,
H.
H19
C1-C2-H19
C1-C2-H19
C16-C17-H34
C1-C2
C17-H34
.
182
0.5
4
16
x 10
14
12
10
8
6
4
2
0
0
0.5
1
1.5
. 3.
.
C-C-H
,
,
,
.
,
,
1.
.
C-C
,
,
,
C9
,
,
.
,
.
,
,
,
,
(
,
–
).
4.2.
,
,
(
)
.
,
.
,
,
,
,
.
183
4.3.
5.
,
:
1.
,
,
.
2.
,
,
, «
»
«
»
«
»
,
.
,
«
»
.
,
.
3.
,
.
,
.
4.
,
,
184
».
,
.
:
:
.
,
.
.
.
,
.
.
,
,
.
,
.
,
.
.
,
.
,
EA 1110
DELTA Plus (ThermoElectron,
),
,
(
«
,
.
UDR,
)
».
. 1.
,
,
.,
2008 .
(
,
.,
,
)
,
.,
.
,
–
.
,
.
(HClO4)
(
.
. 1),
.
5,
–
1.
–
5
,
1.
)
–
(
.
,
,
.
–
3
),
5,
3 –
Open University
5–
.
3
200
1400
-(17.2±1.0) ‰,
o
.
700
(74%)
900
o
.
13
C
– -(17.8±1.0) ‰.
,
,
(500-600 C).
185
,
.
5
.
1200
,
2.
,
13
C
,
-(17.4±1.0) ‰.
,
13
-(17.3±0.5)‰.
,
,
.
.
,
500
.
L.
–
,
,
.
1993
.
Thorsberg
(Kinnekulle)
(~480
.
)
80
20
(Heck et al., 2004; Schmitz et al., 2009).
,
,
,
.
,
L, .,
.
~1
,
,
,
Schmitz et al. (2003)
,
(
)
,
,
Heck
.
,
(
~1-2
,
4
. (2004, 2008)
,
.
)
(
,
20,21,22
Ne
,
~1
)
.
(~2700
2
,
)
,
,
0.2
.
~470
.
Thorsberg
L-
.
.
,
,
.
~1-2
.
480
.
.
186
. 1.
(
UDR)
«
».
187
. 1:
1.
(1000 g, 2-3
)
~80 C.
2.
.
3.
3.
(~1:1)
,
.
4.
5.
.
"
1.
.,
…"
.,
:
.,
.,
.,
.
//
«
» 1(27)’2009. (Alexeev V.A., Ivliev A.I., Kuznetsova O.V.,
Sevastyanov V.S., Semenova L.F., Fisenko A.V. Heterogeneity of isotope composition of carbon
of ultradisperse detonation diamond).
URL: http://www.scgis.ru/russian/cp1251/h_dgggms/1-2009/informbul-1_2009/planet4.pdf
URL: http://www.scgis.ru/russian/cp1251/h_dgggms/1-2009/informbul-1_2009/planet4e.pdf
2.
.,
.,
.,
.,
.,
.
//
-2009, . 3-4.
3.
.,
.,
.,
.,
.,
.
//
,
.
,
, 2009.
4.
.
//
. 2009 (
).
188
:
:
.
,
.
.
.
,
,
.
.
,
.
,
.
,
.
,
.
.
,
,
-,
-
(
. 1),
,
.
,
“
-II” (PGII),
31 ( = -76.9 ,
;
. 2)
“
= 145.3 )
,
, PGII
”.
,
,
.
,
.
,
,
,
,
.
,
,
,
.
,
,
-II,
.
.
(
), [H-Gly4-NH(CH2)5]2,
. 1.
(
32
,
,
,
r
=80).
PCFF .
:
V
Vb
V
V
VVdW
Ve
V Surf
.
(1)
189
Vb
V -
, V , VVdW -
, Ve -
.
rRF=20 Å.
.
3.35 Å)
1780 Å2,
1.42 Å
,
.
,
;
4 kT.
,
.
(
(001) KAl2(Si3 Al)O10(OH)2)
20Å.
,
1800Å2.
,
Z.
(NVT-
,
,
= 300 ,
(r-RESPA).
).
–“
,
,
rs=5Å,
rl=20 Å (
3 - 4.5 .
STRIDE
= 30
,
=2
s
s
=0.2
)
“
”
”.
).
DSSP.
,
,
,
,
.
.
,
).
,
,
–
,
.
,
(
).
,
.
(
- 15Å)
(
Z
5Å).
3),
,
.
.
.
.
,
(
2).
,
PGII
.
190
(
PGII
(
. 3).
;
20Å,
.
,
;
(
)
.
,
,
, ),
.
:
,
G ,
exp G ,
/ k BT /
-
exp G ,
/ k BT d d
,
(2)
.
,
,
=-60;
=60
–
=-60).
=60;
(
’
. 8), (
,
,
0,389)
,
,
.
(
0,08).
.
,
=145,3 –
=-76,9;
,
PGII.
,
,
PGII.
,
,
,
.
,
“
,
”
–
.
,
PGII
.
191
O
H
N
H
nR
H-Glyn-R; n>5; R= -OH, -NH2
O
H
N
H
H
N
nN
H
N
H
H
n
O
; n>3
O
H
H
H
H
N
H
N
O
nN
H
O
H
O
nN
H
CH3
nN
O H
H
N
H
N
O
H
H
N
nH
O
nN
H
nN
H
H
N
N
H
H
N
N
H
nH
tetra-Glyn; n>6
tri-Glyn; n>6
. 1.
,
.
. 2.
,
.
,
U-
(
)
.
,
,
.
N-
,
,
.
,
.
192
)
)
. 3.
( )
( ).
1.
.
(
DL(10-6
–
10-6
)
)
10-4
(
5,5
7,5,
,
).
1
,
5
15
.
,
).
( NaPO3 ),
(
( Na2H2P2O7
2
),
- Na6P6O18 ).
(
180
) –
100
.
–
3
3
(25mM
.
.
(
– 50mM
0
80%)
)
193
( 5. 10-7
2.
).
9.
910-4 – 10-6 )
( 10-3 )
(
(~ 10 -3 )
8,5 – 9,0.
( 10-4
)
–
(
20
).
,
,
.
,
,
.
1N6
(
(
~ 12):
NH2
N
N
N
N
Rib
Me2SO4
MeSO4
NaOH, pH ~12
NaOH, pH 6
NHMe
NH
N
N
N
N
Me
N
N
N
Rib
Rib
H+
H+
NHMe
NH
N
N
H
11.
194
N
N
Me
N
N
H
N
N6
N
N
6),
1-
),
.
.
Dowex-50 4 (200-400
)
+
(2:1).
1
(2:1).
,
N6
1-
.
,
1
,
.
–
,
.
.
.
,
(6-
,
9-
-6-
,
9-
)
,
4,6-
-5-
:
Cl
O2N
MeNH2
N
Cl
[H]
N
H2N
Cl
O2N
Cl
N
N
Cl
N
NH3
MeHN
N
Cl
[H]
H2N
N
Cl
H2N
H2N
N
N
MeHN
Cl
N
NH2
N
Cl
N
N
NH3
N
N
N
N
N
H
N
N
N
Me
Me2NH
9-
N
NMe2
Me
NHMe
MeNH2
N
N
Me
9-
N
N
N
N
H
N
N
6-
-6-
2.
195
4,6-
-5-
,
:
O
HC
NH3
CH2(CO2Et)2
CH2(CONH)2
OH
NH2
N
NaOEt
HO
N
HNO3
OH
Cl
O2N
Cl
4,6-
POCl3
N
O2N
HO
N
N
N
-5-
3.
.
,
4,6-
.
4,6-
-5-
68%),
4,6-
-5-
80%.
2.
196
(
POCl3
,
:
:
.
.
,
.
.
2009
(
,
)
.
. 1
,
,
.
. 1.
.
-1
,
- 2.
,
- 3
.
0,10 .
U-1
4,
.
- 5
.
- 6
- 7.
197
-250.
- 8
,
,
.
-01/3.
(
)- 9,
-10
-11
.
,
-5-
-
.
,
.
-3
,
45
.
10
10-3
5-
2 10-3
.
10 10
0,5
,
,
.
"
0,02
-7"
0,02
-
.
.2
+700 .
2
.3.
.
,
,
,
,
.
18
.
2
2-
.
3600
,
1200
.
198
(
)
1 10-9
.
,
2400
.
. 2.
.
=700
-2
2-
14000
12000
10000
8000
6000
4000
2000
0
0
2
4
6
8
10
12
10-9
. 3.
.
,
,
600 -850
.
(1200-2200
)
-5-
199
.
,
.
(10 -10-4
)
,
.
,
.
10-15% ,
.
,
,
,
,
.
200
,
:
:
.
.
,
.
.
,
.
,
*
,
,
.
,
.
,
.
-
,
,
.
,
.
,
.
,
,
(Cronin and Pizarello, 1997; Cooper et al., 1992;
,
.
(Delsemme, 1992; Greenberg, 1993),
14%
,
,
, 2001).
,
.
HCN
,
.
,
,
.
,
,
,
.
,
,
,
.
,
(
.
2
)
,
3
.
,
,
,
,
,
,
201
.
CH4, NH3, H2O
(Draine, 2003).
.
–
—
.
.
Fe
—
;
Mg
Fe2[SiO4].
(Mg,Fe)2[SiO4].
Mg2[SiO4]
:
)
(145
)
.
,
,
,
.
.
– (MgxFe1-x)2Si04.
0.2
.
,
(
,
8094)
(MgFe)2Si2O6,
SiO2
.
),
“Serva”
486,44
3
NaH2PO4.
.
312,00
.
.
.
(HPLC)
.
.
98%.
.
0.7
: Symmetry-C18,
:
0.012
97.5:2.5.
,
- 25
,
:
extra pure (Merck, Germany)
“
”.
Alliance (Waters, USA),
,
,
3.9*150
(Waters, USA).
,
0.01
(
3.4)
:
- 250 ;
- 254
Bruker Esquire LC
GMBH»,
.
m/z
2200.
202
MS
c
,
.
–
,
.
«Bruker Daltonik
,
50
SmartSelectTM
.
HPLC
esquireControlTM SmartSuite,
.
DataAnalysisTM,
.
m/z.
.
50%
NH4.
240 µl/h.
:
.
m/z.
m/z.
0.1%.
.
1.
(
5'
:
) (4.31%),
2'
(0.76 %).
1
,
,
21.25*105 J*m-2.
.
*( %
1.
Phe)
+
,
,
).
145 nm, 21.25*105 J*m-2
(5)
5'
2.940
SiO2
1.930
3.190
4.310
2'
0.760
0.093
0.086
0.420
2'3'
0.962
5.770
0.110
3.386
4.730
5'
0.780
3'
0.043
8.616
*
4.662
: 5'
, 2'
, 2'3'
(145 )
,
, 5'
8.616%
,
3'
.
. 5'
,
,
,
,
,
.
203
5'
1.
,
.
3.386 %,
,
,
8.616 %
(
).
,
.
,
1.84
.
,
.
«
»
,
,
.
.
.
SiO2
.
.
.
,
.
,
,
.
66%
– 24%.
,
. 1.
5'
( %
5'
). 1 –
SiO2.
5'
.
204
(
). 2 -
,
(Chyba, Sagan, 1992).
,
,
(Paecht-
Horowitz, 1988).
(Brownlee et al., 2006, Lambert, 2008).
,
,
,
–
.
,
,
.
11»
«
.
«
» (Kuzicheva, Simakov, 1999; Kuzicheva, Gontareva, 2001).
,
SiO2
.
,
,
,
.
(Kuzicheva, Gontareva, 1999; Kuzicheva,
Simakov, 1999)
,
,
.
,
,
,
(Delsemme, 1998;
Greenberg, 1993).
1.
.
. 2001.
:
.
// .: URSS. 256 c.
2. Brownlee D., Tsou P., Aléon J., Conel M., Araki T., Bajt S., Baratta G. A., Bastien
R., Bland Ph., Bleuet P., Borg J., Bradley J. P., Brearley A., Brenker F., Brennan S., Bridges J.
C., Browning N.D., Brucato J. R., Bullock E., Burchell M. J., Busemann H., Butterworth A.,
Chaussidon M., Cheuvront A., Chi M., Cintala M. J., Clark B. C., Clemett S. J., Cody G,
Colangeli L., Cooper G., Cordier P., Daghlian C., Dai Z., D'Hendecourt L., Djouadi Z.,
Dominguez G., Duxbury T., Dworkin J.P., Ebel D. S., Economou T. E., Fakra S., Fairey S.,
Fallon S., Ferrini G., Ferroir T., Fleckenstein H., Floss C., Flynn G., Franchi I. A., Fries M.,
Gainsforth Z., Gallien J.-P., Genge M., Gilles M. K., Gillet Ph., Gilmour J., Glavin D. P.,
Gounelle M., Grady M. M., Graham G. A., Grant P. G., Green S. F., Grossemy F., Grossman L.,
Grossman J. N., Guan Y., Hagiya K., Harvey R., Heck Ph., Herzog G. F., Hoppe P., Hörz F.,
205
Huth J., Hutcheon I. D., Ignatyev K., Ishii H., Ito M., Jacob D., Jacobsen Ch., Jacobsen S., Jones
S., Joswiak D., Jurewicz A., Kearsley A. T., Keller L. P., Khodja H., Kilcoyne D., Kissel J., Krot
A., Langenhorst F., Lanzirotti A., Le L., Leshin L. A., Leitner J., Lemelle L., Leroux H., Liu M.,
Luening K., Lyon I., MacPherson G., Marcus M. A., Marhas K., Marty B., Matrajt B., McKeegan
K., Meibom A., Mennella V., Messenger K., Messenger S., Mikouchi T., Mostefaoui S.,
Nakamura T., Nakano T., Newville M., Nittler L. R., Ohnishi I., Ohsumi K., Okudaira K.,
Papanastassiou D. A., Palma R., Palumbo M. E., Pepin R. O., Perkins D., Perronnet M.,
Pianetta P., Rao W., Rietmeijer F., Robert F., Rost D., Rotundi A., Ryan R., Sandford S. A.,
Schwandt C. S., See T. H., Schlutter D., Sheffield-Parker J., Simionovici A., Simon S., Sitnitsky I.,
Snead Ch. J., Spencer M. K., Stadermann F. J., Steele A., Stephan T., Stroud R., Susini J., Sutton
S. R., Suzuki Y., Taheri M., Taylor S., Teslich N., Tomeoka K., Tomioka N., Toppani A., TrigoRodríguez J. M., Troadec D., Tsuchiyama A., Tuzzolino A. J., Tyliszczak T., K. Velbel U. M.,
Vellenga J., Vicenzi E., Vincze L., Warren J., Weber I., Weisberg M., Westphal A. J., Wirick S.,
Wooden D., Wopenka B., Wozniakiewicz P., Wright I., Yabuta H., Yano H., Young E. D., Zare R.
N., Zega T., Ziegler K., Zimmerman L., Zinner E., Zolensky M. Comet 81P/Wild 2 under a
microscope// Science. 2006. V. 314. P. 1711-1716.
3. Chyba C. F., Sagan C. Endogenous production, exogenous delivery and impact-stock
synthesis of organic molecules: an inventory for the origins of life// Nature. 1992. V. 355. P.
125-132.
4. Cooper G. W., Onwo W. M., Cronin J. R. Alkyl Phosphonic Acids in Murchinson
Meteorite// Geochim. Cosmochim. Acta, 1992. V. 56. P. 4109-4115.
5. Cronin, J. R., Pizarello S. Enantiomeric Excesses in Meteoritic Amino Acids//
Science. 1997. V. 275. P. 951-955.
6. Delsemme A. H. Cosmic origin of the biosphere// In: The molecular origins of life:
assembling pieces of the puzzle. Cambridge University Press. 1998. P. 100-118.
7. Greenberg J. M. Physical and Chemical composition of Comets. From Interstellar
Space to the Earth// In: The Chemistry of Life Origin. Kluwer. 1993. P. 195-207.
8. Kuzicheva E. A., Gontareva N. B. The Possibility of Nucleotide Abiogenic Synthesis
in Conditions of «Cosmos-2044» Satellite Space Flight// Adv. In Space Res. 1999. V. 23. P. 393396.
9. Kuzicheva E. A., Simakov M. B. Abiogenic Synthesis of Nucleotides in Conditions of
Space Flight of Biosputnik «Bion-11»// Adv. Space Res., 1999. V. 23. P. 387-391.
10. Kuzicheva E. A., Gontareva N. B. Study of the peptide prebiotic synthesis in context
of exobiological investigations on earth orbit// Adv. In Space Res. 2001. V. 23. P. 393-396.
11. Paecht-Horowitz M., Eirich F. R. The polymerization of amino acid adenylates on
sodium montmorillonite with pre-absorbed polypeptides// Orig. Life Evol. Bioshpere. 1988. V.
18. P. 359-387.
206
:
:
.
.
.
,
.
1.
.
,
.
,
(
).
,
.
«
,
»,
,
,
.
,
.
–
,
.
,
.
(
)
.
( Gof,T)
,
,
(
(
)
).
,
.
,
-N
.
,
,
207
,
(
2
,
).
1.
.
:
G0T,P = G0f – S0Tr,Pr (T – Tr) +
T
Tr
C 0PdT - T
T
Tr
C 0P dlnT +
P
Pr
V 0 dP,
G0f
(Tr)
,
(Pr) 298,15 K
,
,
, S0, C0P
1
V0
.
.
,
»
«
»
,
.
,
.
,
–
,
.
,
,
( ) =
2
) + 0,5
2
(
2
),
.
,
,
,
(
)
.
2.
)
, 3-
(3-
)
(
-
2
(
. 1).
(7),
2
2
,
4
2,
2
,
(
(7),
(8)
(1),
208
)
,
.
2).
4
32,
.
2
2
)
(7)
(
(1),
(13)
(12)
2
4),
. 1.
, 3: 2,O2, H2O, CO2, CO, C; II ; III ; IV –
, 3 –
,
, 6 –
, 7 –
, 3,
, 11 –
, 12 –
. I –
:
3, 4 –
–
. 1 –
,
,8–
,
4
2
,
, 13 –
6
,
2
4
, 2 –
, 5 –
,9–
, 10 –
.
4
2
4
,
,
).
,
,
,
(
2
4
2
13
-10 – -15‰).
4
-
2
4
4,
2.
, 3-
,
,
2
(7)
4
2
2
4
2,
.
,
.
2
–
(
- µ 2).
(
500
273 – 900
( G0T, )
,
,
. 2,
(373.9°C, 220.4
.
(
,
.
407°C, 298.5 (
–
)).
),
2
a
2
–
)
.
(µ
,
=
RTlna
,
2
O2
)
209
.
,
)
,
(
(
)
.
,
C2H4 (
)
.
) + 2CH3COOH (
(
2
4
= 614 ,
) + (CH2)2(COOH)2 (
) = C2H6 (
+
2
=
),
),
3
.
(
3-
)
.
,
457
,
,
.
.
. 2.
–(
2
= RTlnaO2)
(
3).
.
(Fe2O3)–
(SiO2) –
(Fe3O4),
(FeS2) –
(Fe2SiO4)
–
.
210
(FeS) –
.
4
–
–(
3
2 )2
,
.
)2
,
,
–
(SiO2- Fe3O4-Fe2SiO4)
–
(Fe2O3-Fe3O4)
.
(FeS2-FeS-Fe3O4).
–
–
307
–
(
–
3-
.
,
,
2
).
–
.
500
. 3),
,
.
,
–
(
. 3).
(
4
III)
–
– (
3
2 )2
).
–
)2 (
= 500
. 2,
–
~670
.
,
2.
,
2
.
211
. 3.
3–
500
2
.
.
III –
-
2.
2
.
. 2.
3.
33-
2
,
.
–
–
–
:(
2 )2
)2
(
)2
)2
)(
2
.
(AFC)
4),
13
–
,
,
C (0 – -12‰),
.
212
)2 .
,
2
, 3(
2,
( .
Crenarchaeota)
.
,
. 4.
(AFC). 3–
2
,
–
(
,
– 3-
).
.
,
,
-
,
-
,
.
AFC.
.
2
AFC
,
(
,
,
-
.)
.
),
= ~ 400-600 (
.2),
.
(
= ~ 400-700
= 500
. 3)
Fe3O4, FeS
FeS2
AFC
,
(Fe5NiS8),
.
,
(Fe3S4),
(Fe4NiS5)
–
.
,
(
AFC
)
(“robustness”),
(
. 2, 3).
( . 4),
213
)2
)2
+
2
=
(
2 )2
,
)2 .
» (“redox switch”),
«
-
.
4.
Marakushev S. A. and Belonogova O. V., The parageneses thermodynamic analysis of
chemoautotrophic
2 fixation archaic cycle components, their stability and self-organization in
hydrothermal systems, J. Theoret. Biol. 2009. V. 257. P. 588-597.
.
.
.
: «
«
»: 15
. 1994-2009».
. ISBN 978-5-9710-0262-8.
(2009). . 32-41.
.
.
: «
2.
»: 15
. 1994-2009».
. ISBN
978-5-9710-0262-8. (2009). . 42-50.
5.
S.A. MARAKUSHEV, O.V. BELONOGOVA, Biomimetic Catalysis of Archaic
Chemoautotrophic CO2 Fixation Reactions in Hydrothermal Environments. VIII International
Conference. "Mechanisms of Catalytic Reactions", dedicated to the 70th anniversary of
Professor Kirill I. Zamaraev (
), Novosibirsk Scientific Center, Russia, on June 28 - July
2, 2009. LECTURES ABSTRACTS: P. 148.
C. .
.
(
),
2.
:«
«
».
.2-4
. 2009 .
.
.
. (
),
: «
».
.2-4
. 2009 .
Sergey Marakushev, Ol’ga Belonogova, “Metabolic Design and Biomimetic Catalysis Of
Archaic Chemoautotrophic CO2 Fixation Pathways in Hydrothermal Environments”.
INTERNATIONAL CONFERENCE BIOCATALYSIS-2009: FUNDAMENTALS &
APPLICATIONS 2009 . (
), .
,
, 19-24, 2009, LECTURES
ABSTRACTS: P. 32-33.
214
:
:
.
,
.
.
,
.
.
,
.
,
.
,
.
.
14.04.09 (
)
.
[1,2]-
,
.
.
. 1.
(
300)
,
.
.
.
.
,
,
L-
:
;
,
,
.
,
D-
,
,
(0),
( )
( ),
.
D
L,
,
.
215
. 1.
,
[1-5],
.
216
.
.
,
,
.
,
.
–
.
,
.
,
,
.
,
,
.
,
,
,
.
,
.
,
.
,
,
,
–
,
,
L-
L,
,
.
,
.
.
,
.
,
.
,
.
,
,
,
,
.
.
,
.
2010
.
217
1.
+16 .
2.
3.
.
.
.
(
p
).
.
.:"
.:"
", 1976,
", 1984, 112 .
). 1999,
(
.:
. 40 . +
.
4. Malygin A.G. Structural symmetry of the metabolic reaction network. I.Carboxylic
acid. metabolism. J. Mol. Med. V.78, 2, 2000, pp. 66-73.
5.
.
.
. . 69, 12, 2004, . 1691-1699.
218
:
:
.
,
.
,
.-
.
.
.
,
.
,
.
,
.
.
,
,
,
"
"
(
)
,
,
.
"
"
Chem. 92, 6881-6887 (1988);
873 (1996)).
,
.,
,
«
,
:
,
"
.
,
«
(Eigen M., McCaskill J., Schuster P. //J. Phys.
. .,
. . //
, 166(8),
»
,
«
»
?
"
,
,
»
,
(Vladik Avetisov in Progress in Biological Chirality, Eds. G.
Pályi, C. Zucchi, L. Caglioti (Elsevier: Amsterdam, 2004) Chapter I, pp3-12).
,
.
,
(
)
,
(
).
,
,
. .,
. .
414(3) 309 (2007)),
.
"
,
"
,
,
,
.
. .
( .,
, Zhuravlev Yu. N., Avetisov V. A. The definition of life in the
context of its origin. BioGeosciences 3, 281-291 (2006); Y. N. Zhuravlev, V. A. Avetisov,
Hierarchical scal-free representation of biological realm – its origin and evolution. In Biosphere
Origin and Evolution, Eds. N. Dobretsov et al. (Elsevier: Amsterdam, 2008) Part II, 69-89)
"
".
(
. .
15,
II)
(
)
(
)
.
,
,
.
219
,
.
"
",
.
,
,
.
,
,
.
,
.
,
,
,
,
,
.
,
,
,
,
,
.
,
,
,
.
.
,
,
,
)
,
)
,
(
(
")
"
"
.
,
,
.
"
"
"
,
-
.
,
.
,
,
,
,
,
.
(
)
.
,
.
,
),
(
,
.
,
.
,
,
,
,
.
,
,
,
.
,
.
,
,
,
,
.
,
,
,
.
.
2010 .
220
.
,
,
«
»,
,
.
,
,
(
,
)
,
.
,
,
,
,
,
,
,
. .,
(
, 166(8), 873 (1996)).
. .
.
,
,
,
.
.
,
,
.
:
?
,
,
?
,
,
.
,
.
,
,
,
,
,
,
.
( .,
, Avetisov V. A., Bikulov A. Kh. Protein ultrametricity and
spectral diffusion in deeply frozen proteins. Biophys. Rev. and Lett. 3, 387-396 (2008)).
,
2009
.
,
.,
.
.,
.
:
.
.,
. .,
.//
. .
, .136,
.
3(9),
.566-588
2010 .
(2009).
,
(
,
),
".
.
,
,
,
.
(scale-free)
,
,
,
,
.
:
,
?
.
,
"
"
"
,
".
,
,
,
,
.
"
,
221
.
,
.
,
.
,
"
,
"
.
,
.
.
,
(
)
.
,
(
)
.
,
,
,
.
.,
.
.,
.
(2009),
.,
.
. .,
.//
. .
, .136,
3(9),
.566-588
15(I).
.
,
.
2010 .
2009 .:
1.
.
.,
.
.,
. .,
. .,
. .
, .136,
.//
3(9),
.566-588 (2009)
2. Zhuravlev Yu. N., Avetisov V. A. On the entity-set representation of biological
objects. (submitted to Biology Direct)
222
,
:
:
.
.
,
,
.
.
.
,
,
.
.
.
,
,
.
.
,
,
.
.
.
.
,
2009
.
,
,
,
[1].
,
,
“
”,
(
–
,
).
[2, 3]
,
,
,
.
1.
T
10-5
(pH 6.0–7.0,
(
10-2 M).
,
)-
[2, 3].
,
[3].
[2, 3],
85–90°C:
,
[2, 3]
-
.
(
. 1).
223
,
(0–4º )
(
.
(
) «
)
,
»
,
.
(
)
-
(
).
«
»
,
.
10°C)
(
,
-
.
.
,
(
)
.
(
,
),
.
. 1.
Ade
Thy
Na+
Thy
-
~ 0º
6º [3].
,
,
(
,
,
,
).
.
«Sigma»
–
,
,
KMnO4.
= 260
40–50
(
= 260
),
pH = 7.0
«Calbiochem»),
224
,
(
.
(Na2HPO4: NaH2PO4,
= 6.0),
.
,
.
,
«Hitachi-850»
.
,
.
1.
10-5
(
10-2 M)
T
(pH
6.0–7.0).
.
350
320
(
(
= 260
)
395–405, 440–450
300
,
. 2).
520
,
,
380,
.
425, 435, 455
510
.
,
,
,
.
350
395 405 435
440
425
455
1,0
320
380
.
0,8
.
510
520
0,6
I,
350
320
0,4
425
510
450
300
0,2
260
0,0
300
350
400
. 2.
–
450
Ura,
= 2·10-5
, nm
500
,
,
(
).
.
(
. 3)
,
270
= 350
).
250, 275, 285
= 410
320
.
(
450
250, 260, 285, 325, 355
370
.
= 500
225
,
285, 345 395
.
285
275
0,6
250
0,5
.
0,4
250
260
0,3
450
.
I,
410
260
285
275
320
355
0,2
285
)
0,1
500
a)
370
345
395
0,0
240
260
280
300
320
. 3. )
–
Ura,
); )
Ade9/Ade7 (
340
360
= 2·10-5
.
380
,
, nm
400
,
(
).
,
.
[4, 5],
.
(
.4).
. 4.
.
226
,
S. Nikitine [6],
,
.
,
380
2
455
,
= 260
3,
(
2
= 410
=
250
(
1
1 = 40000
-1
= 38460
)
2,
-1
=
285
(
=
35090
)
4
4
-1
1300–1500
= 450
-1
)
3 = 275
(
3
,
3
= 275
,
4
395
= 285
)
~1375
.
-1
.4),
)
-1
4.
,
3400–
( 1 = 250 ,
395
-1.
3600
2 = 260
405
,
.
.3)
1 ( .
= 36360
(
,
405
6,
7.
2.
0
10°C.
400
( .5).
( 1–2°C)
,
(
50%)
,
,
«
.
»,
~70%
.
3–7°C (
10–15%
,
3
7 °C)
~10°C.
,
4°C
«
10°C
»
.
227
.
0,4
1.5°
~1.7°
1.5°
2.0°
1.7°
1.7°
1.7°
3°
5°
7°
8°
8°
5°
3°
1°
I,
.
.
0,3
0,2
0.8°
0,1
0,0
0
10
,
40
. 5.
(
= 320
,
= 410
)
.
Ade =
-3
Ura = 1.5·10
.
.
. 6
.
,
,
–
,
,
.
.
.
.
I,
.
.
38
.
36
34
0
1
2
3
4
. 6.
2
10 °C,
= 320
,
= 410
.
[2]
228
.
(
)
,
,
.
(~1400
-1
)
-1
(~3500
)
.
[3].
2.
DFT/B3LYP/6-31+G(d)
Ade
Ade
N7 H
.
(ApA).
ab initio
31++G(d,p)
)
DFT-
E(MP2)
Ade,
.
,
TDDFT/PBE/6-31+G(d)
(PCM).
MP2/6R
N7H
Ade
.
GAUSSIAN-03 [7],
(https://hpc.apmath.spbu.ru/ ).
HPC-
N7
,
,
.
Ade
,
N9H
(Ade9)
N1, N3, N7
–
[8]
N7H
(Ade7),
N9,
.
B3LYP/6-31G+(d)
N7H
(
.
.1),
,
,
,
,
).
229
Ade7 (C1)
Ade7 (C1)
(PCM)
Eg = -467.326748 a. .
= -6.662
= -1.232
d = 6.99 D
Es = -467.366762 a. .
= -6.418
= -1.076
d = 11.46 D
.1.
N7 H
.
B3LYP/6-31+G(d)
(
.
.1),
N7H
)
0.04 a.u. (
1.09
.
0.2
)
.
( 1.64
)
Ade7
: 6.99 D
11.46 D.
N9H
(0.73
(
-0.04
),
Ade9
)
: 2.41 D
3.46 D,
.
Ade7
Ade
(
),
R = 3.4 Å
= 36
(
.
.2).
[9],
Ade7
Ade9
72%.
Ade7 : Ade9 = 28% :
Ade,
,
,
,
N7H N9H
.
: Ade9/Ade9, Ade9/Ade7, Ade7/Ade9
,
,
ApA
Ade7/Ade7.
,
.
Ade9/Ade9
ApA
. 2.
230
Ade9/Ade9
.
,
B3LYP/6-31+G(d)
(
Ade9/Ade9
R 3.49 Å, = 36°
E = -934.748656 a. .
= -6.263
= -1.040
d = 6.79 D
= -0.284
Ade9/Ade7
R 3.46 Å, = 36°
E = -934.740836 a. .
= -6.259
= -1.196
d = 14.40 D
= -0.133
Ade7/Ade9
R 3.42 Å, = 36°
E = -934.742169 a. .
= -6.314
= -1.091
d = 10.62 D
= -0.169
.
. 3):
Ade7/Ade7
R 3.67 Å, = 36°
E = -934.735030 a. .
= -6.366
= -1.199
d = 21.05 D
= -0.041
. 3.
Ade.
-
,
R = 3.42
3.67 Å.
Ade9/Ade9:
Ade9/Ade7
= -0.169 ,
0.133
Ade7/Ade7
= -0.284
.
:
=-
Ade7/Ade9
.
= -0.041
,
.
,
Ade9;
Ade7/Ade9
Ade7/Ade7 –
Ade7/Ade9 –
Ade9;
Ade
Ade9/Ade7 –
( Ade9/Ade9
Ade7).
Ade9/Ade7
( Ade9/Ade9
Ade7).
,
.
,
Ade7/Ade7 –
[8, 9],
(
)
.
,
,
[10],
ab initio
(BSSE).
,
[13],
,
).
ab initio
DFT
.
ab initio
E(MP2)
Ade.
MP2/6-31++G(d,p)
)
R
2.9
3.6 Å
R
0.05 Å.
4.
231
,
E(MP2)
R = 3.20 3.25 Å,
Ade
,
B3LYPR
3.42 3.67 Å.
MP2N7H N9H
E
:
E(Ade9/Ade9) = -0.558
E(Ade9/Ade7) = -0.595
E(Ade7/Ade9) = -0.498
E(Ade7/Ade7) = -0.564
R = 3.20 Å;
R = 3.20 Å;
R = 3.25 Å;
R = 3.20 Å.
E(MP2), a.u.
-932,116
-932,118
Ade7/Ade7
Ade7/Ade9
Ade9/Ade7
-932,120
-932,122
Ade9/Ade9
-932,124
-932,126
R, A
-932,128
2,8
2,9
3,0
3,1
3,2
3,3
3,4
3,5
3,6
3,7
. 4.
E(MP2)
Ade.
)
B3LYPAde
3,8
R
E
-0.04
-
-0.28
.
-
.
ab initio
(CASPT2
CCSD (T)),
.
N7
,
N7H
.
Ade7
TDDFT/PBE
.
c
,
N7H
270
[1].
4.90
(
)
B3LYP/6-31+G(d)
Ade7
I = 5.43
:
)
.
I
(
;
I
= 5.34
,
.
[12],
,
232
.
.1)
.
.
Ade9
PBE [11].
PBEAde7
c
1.
.
c
6-
31+G(d).
1.
(
)
(f) N7 H
TDDFT
.
(PCM)
267.50 nm (f = 0.0133)
263.93 nm (f = 0.0610)
239.60 nm (f = 0.0209)
265.37 nm (f = 0.0798)
239.63 nm (f = 0.0095)
267.84 nm (f = 0.0716)
263.18 nm (f = 0.0116)
261.77 nm (f = 0.0227)
241.59 nm (f = 0.0160)
271.31 nm (f = 0.0453)
266.12 nm (f = 0.0383)
262.35 nm (f = 0.0252)
226.22 nm (f = 0.0167)
270.18 nm (f = 0.0275)
268.39 nm (f = 0.0585)
263.28 nm (f = 0.0159)
240.96 nm (f = 0.0106)
PBE/6-31G
PBE/6-31G(d)
PBE/6-31+G
PBE/6-31+G(d)
PBE/6-31++G
PBE/6-31++G(d)
268.77 nm (f = 0.1036)
242.46 nm (f = 0.0061)
PBE/6-31++G(d,p)
269.17 nm (f = 0.1029)
242.68 nm (f = 0.0059)
263.81 nm (f = 0.1313)
249.64 nm (f = 0.0335)
265.07 nm (f = 0.1339)
249.6 nm (f = 0.0229)
268.93 nm (f = 0.1729)
252.87 nm (f = 0.0343)
274.94 nm (f = 0.0315)
270.00 nm (f = 0.1469)
253.03 nm (f = 0.0228)
269.00 nm (f = 0.1734)
252.89 nm (f = 0.0343)
275.03 nm (f = 0.0318)
270.07 nm (f = 0.1466)
253.07 nm (f = 0.0227)
275.77 nm (f = 0.0287)
270.62 nm (f = 0.1500)
253.29 nm (f = 0.0219)
5
N7H
,
PBE/6-31+G(d)
: 275.01
(f = 0.0315), 270.00
(f = 0.1469)
,
,
* np
*
0.0219).
.
253.29
(
.
(f =
. 5).
Ade
Ade
288
N7H
260 , 275
N9H
.
,
(
,
) [1].
TDDFT/PBE/6-31+G(d)
,
N7H
N9H
,
R = 3.20 3.25 Å).
Ade9/Ade7, Ade7/Ade9, Ade7/Ade7
Ade9/Ade9
.
2-
(
6
7.
233
. 5.
PBE/6-31+G(d)
N7H
Ade
.
Ade9/Ade7
274.3
),
(f = 0.099)
(262–245
(
.
. 6).
323–337
Ade7
284
)
260, 275 288
(277–292
* np
*
).
,
Ade9.
(
,
253, 274
.
Ade7/Ade9
268
(271–285
.
)
Ade7/Ade7
0.152)
(244–263
6.
)
.
Ade9/Ade9 (
269.1
Ade9 (267
,
. 7)
).
271–
277
277
,
, ApA [1].
,
2
234
.
,
284
.
(f = 0.148)
(242–256
)
273
(f =
(275-290
)
3115
-1
,
.
254.6
(f = 0.091)
337.4 nm (f=0.008); 1
1*(0.56), 1
2*(0.29)
323.8 nm (f=0.010); 2
2*(0.41), 2
1*(0.38)
292.4 nm (f=0.002); 1
1*(0.69)
287.6 nm (f=0.008); 1
3*(0.63), 2
3*(0.27)
284.5 nm (f=0.005); 2
1*(0.65)
282.3 nm (f=0.057); 1
4*(0.39), 1
2*(0.30)
280.4 nm (f=0.026); 2
2*(0.36), 1
2*(0.30)
277.1 nm (f=0.034); 1
*(0.41),
2
2
2*(0.27)
274.3 nm (f=0.099); 1
*(0.32),
2
2
4*(0.27)
273.5 nm (f=0.015); 2
*(0.64)
2
261.6 nm (f=0.021); 3
1*(0.43), 2
4*(0.28)
259.2 nm (f=0.007); 2
*(0.38),
3
2
4*(0.29)
255.8 nm (f=0.013); 3
*(0.53),
2
4
1*(0.33)
252.9 nm (f=0.019); 4
1*(0.42), 4
2*(0.36)
251.9 nm (f=0.001); 1
3*(0.68)
246.6 nm (f=0.001); 3
1*(0.61), 2
3*(0.33)
245.9 nm (f=0.001); 1
4*(0.52), 2
4*(0.42)
244.8 nm (f=0.016); 1
1*(0.69)
330.7 nm (f=0.0001); 1
1*(0.70)
314.7 nm (f=0.004); 2
2*(0.69)
288.0 nm (f=0.0008); 1
1*(0.69)
285.1 nm (f=0.015); 1
3*(0.50), 1
2*(0.37)
280.8 nm (f=0.024); 2
*(0.42),
1
2
1*(0.38)
279.9 nm (f=0.007); 1
*(0.53),
2
2
2*(0.29)
276.5 nm (f=0.014); 2
*(0.48),
1
2
4*(0.28)
275.6 nm (f=0.004); 2
*(0.63)
2
271.3 nm (f=0.032); 1
2*(0.35), 2
4*(0.33)
268.4 nm (f=0.148); 2
4*(0.40), 2
1*(0.33)
256.7 nm (f=0.056); 1
4*(0.48), 1
3*(0.26)
255.2 nm (f=0.002); 3
1*(0.45), 2
3*(0.41)
252.5 nm (f=0.010); 4
1*(0.51), 2
3*(0.34)
250.0 nm (f=0.022); 3
2*(0.54), 4
2*(0.36)
249.4 nm (f=0.004); 1
3*(0.63)
245.1 nm (f=0.001); 1
4*(0.43), 2
3*(0.39)
242.6 nm (f=0.011); 1
1*(0.68)
241.3 nm (f=0.0008); 2
4*(0.54), 1
4*(0.34)
326.4 nm (f=0.005); 1
*(0.46),
1
2
1*(0.31)
323.9 nm (f=0.006); 1
*(0.44),
2
1
1*(0.32)
289.7 nm (f=0.010); 1
*(0.64)
1
285.8 nm (f=0.0006); 2
1*(0.56), 1
2*(0.40)
*(0.37),
282.5 nm (f=0.019); 1
2
2
1*(0.33)
280.0 nm (f=0.001); 1
3*(0.51), 1
2*(0.31)
278.7 nm (f=0.014); 1
4*(0.35), 2
2*(0.27)
276.7 nm (f=0.008); 2
2*(0.42), 1
4*(0.37)
275.5 nm (f=0.029); 2
2*(0.45), 2
2*(0.23)
273.1 nm (f=0.152); 2
1*(0.34), 1
2*(0.34)
262.9 nm (f=0.001); 3
1*(0.60), 4
2*(0.20)
258.1 nm (f=0.003); 3
2*(0.50), 4
1*(0.30)
255.5 nm (f=0.015); 2
3*(0.39), 4
1*(0.35)
252.6 nm (f=0.007); 2
4*(0.37), 4
2*(0.34)
250.1 nm (f=0.002); 1
3*(0.55)
247.0 nm (f=0.001); 3
1*(0.62)
245.9 nm (f=0.003); 4
1*(0.55), 1
4*(0.26)
243.9 nm (f=0.015); 1
*(0.70)
1
. 6.
Ade7/Ade7.
Ade9/Ade7, Ade7/Ade9
235
,
Ade
TDDFT/PBE/6-31+G(d)
.
B3LYP/6-31+G(d)
N7H
ab initio
.
)
DFTE(MP2)
B3LYPR
0.28
.
3.42 3.67 Å.
MP2-
ab initio
,
MP2/6-31++G(d,p)
R (
E(MP2)
Ade,
.
,
R = 3.20 3.25 Å,
Ade
B3LYPE
N7
Ade
-0.04
E = -0.5 -0.6 .
.
(CASPT2
CCSD (T)),
.
-
TDDFT
Ade
270 nm,
0.023), 270 nm (f = 0.147), 275 nm (f = 0.032).
PBE/6-31+G(d)
N7H
N9
.
.
N7
Ade,
PBE/6-31+G(d): 253 nm (f =
325.9 nm (f=0.005); 1
1*(0.51), 2
2*(0.31)
322.5 nm (f=0.001); 2
1*(0.45), 1
2*(0.39)
288.0 nm (f=0.003); 1
1*(0.67)
284.6 nm (f=0.012); 2
1*(0.61)
282.8 nm (f=0.030); 1
3*(0.36), 2
3*(0.27)
278.4 nm (f=0.017); 2
4*(0.35), 1
4*(0.33)
276.0 nm (f=0.033); 1
2*(0.43), 1
4*(0.25)
274.0 nm (f=0.010); 1
*(0.44),
2
2
2*(0.26)
271.1 nm (f=0.018); 2
*(0.60)
2
269.1 nm (f=0.124); 1
2*(0.29), 2
3*(0.28)
257.6 nm (f=0.016); 2
*(0.34),
4
2
3*(0.33)
*(0.38),
255.6 nm (f=0.068); 1
4
4
1*(0.31)
248.6 nm (f=0.011); 3
*(0.43),
1
1
3*(0.35)
247.8 nm (f=0.003); 1
3*(0.51), 3
2*(0.24)
246.4 nm (f=0.027); 4
1*(0.40), 3
2*(0.36)
245.9 nm (f=0.002); 2
4*(0.45), 1
4*(0.41)
242.3 nm (f=0.002); 1
4*(0.51), 2
4*(0.30)
241.1 nm (f=0.001); 3
1*(0.56)
240.6 nm (f=0.020); 1
5*(0.66)
. 7.
236
Ade9/Ade9.
1. .
1987, 584 .
2.
.
.
.,
.,
.,
.,
–
.406,
.,
.,
.,
,
.
.
3, .402.
3.
.:
, 2006,
.
,
–
. «
».
.
.
.
, . 2008, .169.
4. M. Kasha, H.R. Rawls, M.A. El-Bayomi. The exciton model in molecular spectroscopy.
Pure and Appl. Chem.,1965, vol. 11, 3, p.371.
5.
.
. .:
, 1968.
6. S. Nikitine. J. Chem. Phys., 47 (50) 613; 50 (53) 407.
7. Gaussian 03, Revision B.05, Frisch M.J., et al. Gaussian, Inc., Pittsburgh PA, 2003.
8.
.
,
.
,
.
.
,
. //
.
», . 14,
.
.
, .:
, 1977, .78.
9. M. Dreyfus, G. Dodin, O. Bensaude, J.E. Dubois // J. Am. Chem. Soc., 97, 1975,
p.2369.
10. M. Swart, T. Wijst, C.F. Guerra, and F.M. Bickelhaupt.
stacking tackled with
Density Functional Theory. // J. Mol. Model. (2007) 13, pp.1245.
11. G. Olaso-Gonzalez, D. Roca-Sanjuan, L. Serrano-Andres, and M. Merchan. Toward
the understanding of DNA fluorescence: The singlet excimer of cytosine. J. Chem. Phys., 125,
231102 (2006).
12.
.
,
.
,
.
.
.
..
,
, 2007, 219 .
13. J.P. Perdew, K. Burke, and M. Ernzerhof. Generalized Gradient Approximation Made
Simple. Phys. Rev. Lett. 77, 3865 (1996).
237
:
:
.
,
.-
.
.
.
,
,
.
.
,
.
,
.
.
,
,
.
,
,
2.
,
.
.
,
.
.
(
,
),
.
,
,
(
.
. 1).
,
,
(
)
.
.
:
(
,
)
H2, C, S,
238
.
. 1.
,
.
50-100
~ 10
.
.
.
4000-5000
500
~10
He
3
-3
.
1
(
.
. 2).
.
~3
,
,
.
7
(
Ni–
.
),
Ar+
3
4
~10 -10 Å.
. 2.
.
239
(XPS
)
ESCA-5950 (HewlettK
Packard).
10-8
.
(E
= 284.8 eV).
.
1s
~ 0.8 eV.
0.1 eV.
±5%
>10
.% ;
(<10
.%)
±10%.
Ar+,
50–300 .
.
.
,
,
(
.
. 3).
. 3.
(
)
.
(
).
.
Fe0.
:
3FeO
(Fe0, Fe2+
Fe + Fe2O3
,
Fe3+).
(
240
.
. 4).
(Fe3+/Fe0 = 2).
Concentration (at. %)
2.5
2.0
Fe2+
Fe3+
1.5
1.0
0.5
Fe0
0
Sample Surface
20
40
60
80
Bottom
Thickness of the condensed film (%)
Fe0, Fe2+
. 4.
Fe3+
.
.
Fe3+,
1639).
,
«
-16» (
:
Fe0 : Fe2+ : Fe3+ = 1.2 : 1.9 : 0.7.
Fe3+
,
.
,
,
.
.
,
.
.
.
,
,
.
(
10
-3
).
.
,
.
.
,
,
,
1200° .
,
.
.
2010
.
241
1. M. V. Gerasimov and E. N. Safonova (2009) Possible composition of the early
impact-generated atmosphere and its role in the origin of life. In: European Planetary Science
Congress, vol. 4, EPSC2009-675.
2. M. V. Gerasimov, Yu. P. Dikov, O. I. Yakovlev (2009) The Effect of Reduction of
Elements on Their Dynamics During an Impact. In: The First Arab Impact Cratering and
Astrogeology Conference, Amman - Jordan, University of Jordan, p. 22.
242
(
:
.
)
.
2009
:
1.
~50
.
2.
.
3.
.
,
,
,
.
1.
,
.
,
,
.
,
,
,
, , N,
,
-
,
.
,
,
,
13- (NH4)2HPO4.
.
1.06
,
,
W=109
50
.
0.3 .
,
.
.-2 .-1
:
,
. 1.1
100
400 . . .
200-300 . . .
450
960 . . .
1000
.
,
.1.2,
. .«
»,
4000 . . .
,
13 . .
.
,
N
,
N
9
32.
243
,
.
,
.
10 000
,
20 000
.
.
(
.
.
)
30-60
.
,
,
,
,
.
,
, . .
.
,
,
«
.
,
,
»
,
,
, O, N,
,
,
.
,
,
,
, «
».
,
.
,
,
,
.
,
,
.
,
450
900 . .
.
,
,
.
,
,
.
,
,
,
,
,
.
.
2.
,
,
.2.1.
.
,
(*).
,
,
.2.1
,
,
1
5 105
.,
,
.
,
244
.
.
,
,
.
,
,
.
,
.
.
,
.
,
.
,
,
,
,
,
.
,
,
,
,
.
,
,
,
,
,
,
-
.
,
,
.
,
,
.
,
.
,
,
,
,
,
,
.
245
3.
.
,
,
.
,
,
,
.
,
,
,
,
,
.
,
,
,
.
,
,
.
5
15
,
10
,
30
,
,
.
»
«
,
,
.
.
,
,
,
0
.
.
1400
4000
.
5000
15
.
,
,
.
,
«
»
,
,
.
,
,
,
,
.
,
,
,
.
,
,
,
.
,
.
,
246
,
.
,
40
1,06
15
,
.
,
.3.1,
.
,
.
~ 0,6
7
~2
.
,
,
~ 20
.
,
.
,
,
,
.
,
.
3
1000
.
.
.
.
MALDI-TOF-TOF
,
.
,
,
,
~ 700-800
.
,
,
.
.
,
2000
,
–
.
,
,
. 3.2.
,
,
,
,
.
,
,
.
,
.
,
105-106
,
,
,
.
«
»
,
.
,
,
,
.
,
,
,
–
,
«
,
.
»
.
.
247
,
.
. 1.1.
,
C, H, N, O
. 1.2.
.
248
,
«
P.
1.1
»
100
13
.
600
. 2.1.
.
:
0,1
1
1
2
,
20
.
,
50
40
,
.
*,
.
4:
*,
6
-
*,
-
*,
-
-
.
100
.,
3, 4, 5
3
, 5:
.
,
.
*-
.
249
. 3.1.
,
. 2.
. 6.
. 1.
. 3.
. 4.
. 5.
. 7.
. 3.2.
.
,
C
NH4 NO3.
Ser Cys.
1100
1700
.,
250
Gly, Ala,
,
.
:
:
:
.
.
.
.
,
,
,
,
.
.
.
.
,
.
,
,
,
.
),
.(
.
,
,
.
.
,
,
.
,
.
.
,
.
)
,
,
,
,
(
)
.
,
.
,
,
,
,
,
.
,
,
)
,
(
-
).
,
(
1).
251
Br
Br
N R
Br
P R
HO(CH2)2 N R
-R
-OH-R
Br
R N (CH2)n
X
Br
N
N R
DABCO-R
OH
O
O
N
R
O
N N
CH3
CH3
C O(CH2)2N+ (CH2)9 N+(CH2)2O
O
X=Br (
Br
N R
Py-R
-R
-R
X
N
R
Br
N R
Br P R
Br
N R
Br- CH3
O
); Tos (
)
(
),
CH3 Br
C
O
1.
:
),
(
),
(Py); R –
10-18.
,
,
,
65
-
1.0
%)
2
C 12
C 14
C 16
C 18
70
-,
.
4.5
75
DS,*1010
.
-1
,
,
C 18
C 16
C 14
C 12
4.0
3.5
C10
C14
C16
C18
,
,
).
0.9
0.8
3.0
60
2.5
0.7
55
2.0
0.6
50
1.5
45
1.0
0.5
0.5
40
1E-5
1E-4
1E-3
0.01
CDABCO /
.
-1
0.1
0.1
1
10
100
0.4
0.00
0.01
0.02
0.03
0.04
, M
. 1.
0.05
,M
( ),
),
( )
DABCO-R (
)
-R (
DABCO
. 1
-R
,
,
(
.
),
,
.1
.
,
1,
.
1.
.
.1
.
,
,
,
252
(
-
).
,
/OH-R
-R,
,
.
1.
.
,
R
-R
C10
C12
C14
C16
C18
/OH-R
65
11
3.8
0.95
0.34
DABCO-R
13
5.6
7.5
11
4.0
1.0
0.12
-R
6.6
1.5
0.1
0.018
2.
,
.
,
.
DABCO-R
-R
TMA-R
-1.0
-1.5
-2.0
-2.5
lg
-3.0
-3.5
-4.0
-4.5
-5.0
9
10
11
12
13
14
15
16
17
18
19
nC
. 3.
. 2.
,
.
.
253
. 2
.
,
DABCO-R
,
0.9.
14.
,
-R
,
.
-R
.2
0.5,
. 1 ,
-R
.
,
-18,
.
3.
.
,
(
. 3).
,
.
Br
+
N
Br
N+
R1
CH3
O
= N
N
R2
CH3
= N
O
+
+
N
N
Br -
+
N
.
R1
2
,
O
N Br
+N
Br-
+N
Br -
+N
Br +
+N
Br-
+N
Br -
,
a
+ Br
N
+
N
+
,
O
N
R1=n-C10H2 1; R2=H;
R1=R2=n-C10H21;
Br N
BrN
+
+
N
-
Br -
Br-
Br-
+
-
+
+
BrN
+ Br
BrN
N
Br
N
+
Br
N
+
N
,
+
»
.
4.
N
Br N
+
+
N
N
Br
N
+ Br
+
Br N+
N
+Br
N
Br
+
+
N
Br
N
+ Br
+
b
2
.
8.0
:
,
pH
6.0
.
4.0
( .
. 4
4).
2.0
,
,
.
0.0
-5
.
1x10
-4
1x10
-3
1x10
,
.
. 4.
.
254
-2
1x10
CAPT / M
,
.
,
.
,
-
,
-
-
DABCO-R
,
(
,
. 5).
.
,
,
,
,
(
. 5 ).
O
N
S
H
OH
H
-R
N
O
Br P R
N
-R
O
N
Br
P R
Br
N R
O
-R
HO
N
O
N
O
N
N+
N+
BrR
O
O
N
S
N
+ R
N Br-
N
BrC16H33
O
N
Br
R
R N
SO 3
N R
R'
N
R
R N
R'
O
_
SO3
R
_
Br
R
O
O
N
N R
R'
N
N
O
O
R'
O
N
N
O
R
R
)
)
. 5.
( )
( ),
.
255
,
10.0
Phe,
Leu,
Phe,
4-16
.
Tyr,
Tyr,
0.4
-14
0.2
,
,CS, ppm
pKa
9.5
,
0.0
0
2
4
6
8
10
,
12
pH
-0.2
9.0
,
-0.4
,
.
0.000
0.005
,
-0.6
0.010
C, M
,
. 6 .
(Leu)
(Phe)
16-4-16.
. 6 .
,
(Tyr)
-14.
.
,
,
.
.
,
.
.
(
. 6,
)
(
,
16-4-16)
.
(
.6
. 5).
1
,
.
,
.
,
-14
. 6 ,
. L.
,
,
,
,
,
.
.
256
12
-1
120
1
2
80
:
9
-1
40
-1
6
60
2
103 kobs /
/M
3
3
0
0.000 0.003 0.006 0.009
10 kobs /
103 kobs /
90
10 kobs /
-1
120
2
3
30
40
30
1
1
0
0.000 0.001 0.002 0.003
C
0.001
0.002
0.003
TAT
/M
0
0.0000 0.0002 0.0004 0.0006 0.0008
C /M
0.004
C /M
.
2
. 7
10
1
0
0.000
1
(alkyl=Ethyl)
(alkyl=Hexyl).
2
20
-R
7 .
1 (1)
2 (2)
.
-R,
.
–
.
.
7 .
1 (1)
2 (2)
.
–
,
.
–
,
(
. 5).
,
(
)
.
:
2009 .
R
–
:
-
4
,
O(CH2CH2O)mCH2CH2OH
nKOm,
3.
(
n–
R,
m –
3)
.
,
,
:
(5-10
,
),
,
«
»
,
100
(
. 8).
,
257
,
(
. 8.
9
. 9).
9
,
. 9.
.
,
nKOm/La(III)
.
.).
O
HO P
O
HO
O
O P OH
OH
O
O
C5H11
11
-1
,
4
.
8P(O)Cl3
HO
O
OH
OH
O
O
O
O
4 BuOP(NEt2) 2
.
4
6
76
NEt2
O P
OBu
HO
.
S
NEt2
O P
OBu
HO
C5H11
O
4
O
C5H11
.
O
O
P
O
[S]
O
4 XP(O)Cl2
5 147
X P O
HO
HO
O
X
P
H3C
C5H11
25
10
.(i), 19
C O
[4]
,
,
O
O
4
C5H11
.(k)
c-
.
S
NEt2
O P
OBu
O
O
O
.
4
7
76
(CH3CO)2O
X
OH
HO
O
-
O
C5H11
4
C5H11
4
147
.
O
X = CH 3(i); ClCH 2(k)
O
O
[S]
,
S
NEt2
O P
OBu
C5H11
C5H11 3
8 XP(O)Cl2
OBu
O
OH
O
C5H11
C5H11
S
Et2N
P
BuO O
8 BuOP(NEt2) 2
O
O
O
HO
O P
HO
HO
HO
NEt2
Et2N
P O
BuO
26
9
.(i), 20
O
4
C5H11
4
8
75
.(k)
.
[4]
.
[4]
1:8
4
–
3
1:4
-
4, 5.
5,
6, 7.
7
:
258
8.
,
,
.
[4]
[4]
(
),
,
,
.
(
)
,
[4]
,
,
.
,
.
,
,
. 10.
[4]
,
(II)
,
;
( ),
,
,
– 0.05
0.095·10-6
,
(
,
.
10).
,
( ).
,
,
,
.
.
.
.
.
:
1. XVII
(RCCT 2009), 29
3
2009 .,
A.I. Konovalov, I.S. Antipin. Supramolecular systems – the bridge between nonliving
and living matter // XVII International Conference on Chemical Thermodynamics in Russia
Kazan, Russian Federation, june 29 –july3, 2009. Absracts. Vol. 1. – P.13.
L.Ya. Zakharova. The regularities of the self-organization in aqueous systems based on
surfactants, amphiphylic cyclophanes and polymers // XVII International Conference on
Chemical Thermodynamics in Russia Kazan, Russian Federation, june 29 –july3, 2009.
Absracts. Vol. 1. – P.130.
2.
–
. – 2009, 25-30
.
.
. «
–
», . 26.
3. V th International Symposium “Design and Synthesis of Supramolecular
Architectures”12-16
2009 .,
.
L.Zakharova. "Self-organization of amphiphilic compounds as a basis of the evolution of
supramolecular systems" (O-11).
259
1. L.Ya.Zakharova, V.V.Syakaev, M.A.Voronin, F.G.Valeeva, A.R.Ibragimova,
Y.R.Ablakova, E.Kh. Kazakova, Sh.K.Latypov, A.I.Konovalov / The NMR and spectrophotometry
study of the supramolecular catalytic system based on polyethyleneimine and amphiphilic
sulfonatomethylated calix[4]resorcinarene // J. Phys. Chem. C. – 2009. - V. 113. – N 15 – P.
6182-6190.
2. N.B.Melnikova, E.Kh.Kazakova, I.V.Gulyaev, A.A.Volkov, M.S.Gusichina,
L.Ya.Zakharova, M.A.Voronin, N.A.Makarova and A.I.Konovalov / Monolayers and LengmuirBlodgett films (layers) of amphiphilic tetramethylsulfonatocalix[4]resorcinarene and their
interactions with polyethyleneimine and ceruloplasmin // Supramolecular Chem. – 2009. - V. 21
- N 6 - P. 532-538.
3.
,
,
,
,
,
,
,
,
,
,
/
[4]
//
.
.
.
.–
2009 - 1 - . 138-144.
4. Lucia Zakharova, Victor Syakaev, Mikhail Voronin, Vyacheslav Semenov, Farida
Valeeva, Alsu Ibragimova, Azat Bilalov, Rashit Giniyatullin, Shamil Latypov, Vladimir Reznik,
Alexander Konovalov / New self-asembling systems based on bola-type pyrimidinic surfactants.
J. Colloid Interface Sci. doi:10.1016/j.jcis.2009.10.006.
5. Lucia Ya. Zakharova, Vyacheslav E. Semenov, Mikhail A. Voronin, Farida G. Valeeva,
Rashid Kh. Giniatullin, Victor V. Syakaev, Shamil K. Latypov, Vladimir S. Reznik, Alexander I.
Konovalov / Supramolecular catalytic systems based on bolaform pyrimidinic surfactants. The
counterion effect. (Accepted for publication; Mendeleev Communications).
6.
,
,
,
,
/
4- -1-1[2.2.2]
.(
,
).
7. Yuliana R. Kudryashova, Natalia M. Selivanova, Mikhail A. Voronin, Alsu R.
Ibragimova, Svetlana E. Solovieva, Lucia Ya. Zakharova, Yuri G. Galyametdinov, Igor S.
Antipin, Alexander I. Konovalov / Amphiphilic Oxyethylated Calix[4]arene: New Building
Blocks for Design of Nanoaggregates and Liquid Crystalline Mesophase. (Submitted to
Langmuir).
8.
,
,
,
/
[4]
.(
).
4
1. XVI
»,
2009 .
«
:
,
, 29
,
,
,
–
/
. - . 51.
2. Vth International Symposium “Design and Synthesis of Supramolecular Architectures”,
October 12-16, 2009, Kazan, Russia.
260
Yu.R.Ablakova, G.I.Vagapova, G.A.Gaynanova, V.V.Syakaev, L.Ya.Zakharova,
I.V.Galkina, A.I.Konovalov / Self-organization and catalytic activity of the systems based on
amphiphylic phosphonium salts - P. 137 (YP-45).
3. V-th International Symposium “Supramolecular Systems in Chemistry and Biology”,
May 12-16, 2009, Kyiv. Ukraine.
T.N.Pashirova, G.A.Gainanova, E.P.Zhil’tsova, A.R.Kayupov, E.M.Kasymova,
A.R.Burilov, L.Ya.Zakharova, A.I.Konovalov / Novel polyethers based on the calixarene
platform. The synthesis and properties. – P. 103 (P-22).
4. V-th International Symposium “Supramolecular Systems in Chemistry and Biology”,
May 12-16, 2009, Kyiv. Ukraine.
Gulnara G. Gaynanova, Lucia Ya. Zakharova, Irina V. Galkina, Alexander I. Konovalov /
Supramolecular systems based on amphiphilic phosphonium salts with sterically hindered head
groups. - P. 104 (P-23).
261
:
:
.
,
.
.
,
.
,
.
,
.
,
.
.
2009
.
: 1)
(
,
)
2)
(
).
2009
.
,
,
(
)
.
2009
, 26
,9
.
1.
(Fedonkin M.A. Eukaryotization of the Early biosphere: a biogeochemical aspect //
Geochemistry International, 2009, Vol. 47, No. 13, pp. 1265–1333)
10 .
,
,
,
.
.
.
,
.
,
,
.
.
,
(Fe, Ni, Co, V, W, Cu, Mo
.),
.
.
,
.
,
,
,
.
262
(
,
,
),
(CH4, NH3, H2S ,
, H2O)
,
–
.
,
.
(
(
,
, Fe, W, Ni)
, Mo, Cu, Zn).
,
.
,
,
,
,
.
(750-540
.
)
,
,
.
? 200
«
.
»
,
2.
(
.
).
,
(
.
–
. 2009. 91
//
.).
,
.,
,
,
.
555
.
.
.
"
,
Horodyskia
";
Yochelson and Fedonkin 2000
Horodyskia williamsii.
1465
.
1070
,
.
,
,
;
.
.
,
.
,
,
Precambrian
.
.
Research
).
(
4-
).
,
- Glomulus filamentum Steiner, 1994; Eoholinia
fruticulosa A. Istchenko, 1989; Tyrasotaenia podolica Gnilovskaya, 1971; and Kanilovia sp.
263
(
)
(
.
,
.
.
,
.
).
Kimberella
Parvancorina (
Kimberella
(
),
,
,
).
,
.
,
-
,
.
,
,
«
,
«
1500
quadrata,
»
»
,
.
(
).
Parvancorina
.
,
P. minchami
.
.
,
P. sagitta
.
,
.
Primicaris). (
.
(Scania,
).
.
.
.
,
(
),
.
«
»,
» (
), «
» (
-
,
«
)
».
Metazoa
:"
"
"
,
,
".
.
,
.
,
,
"
"
,
(
) -
.
"
",
,
,
(
.
)
.
(
264
.
).
:
;
;
;
;
.
,
,
.
(
.
).
,
,
.
.
.(
.
.
).
,
.
,
,
.
(
.
).
.
Gaojiashania
(
)
.
. (
,
.
Geological
Magazine).
05.02-26.02.2009.
4),
.
(
.
.
.
(Fayek Kattan,
(
,
),
.
))
.
.
,
.
Metazoa
(Jibalah)
(Dayka)
.
05-15.07.2009.
,
.
,
Metazoa
.
),
28.07– 06.09.2009.
30
Metazoa (
.
).
.
,
,
,
.
Metazoa «
.
.
»
(
),
(
,
«
»),
265
«
.
,
.
05.08 - 05.09.2009.
.
).
,
.
»
.
(
), .
(
,
,
,
.
sorichevae Sok., 1965,
.
-
- Beltanelloides
44
.
,
, 2008) (
.
21.10-12.11.2009.
(
.
(
,
,
)).
.
Metazoa
(
. .
).
Ernietta Pflug,
.
1. Fedonkin M.A. Eukaryotization of the Early biosphere: a biogeochemical aspect //
Geochemistry International, 2009, Vol. 47, No. 13, pp. 1265–1333.
2. Fedonkin M.A. Physical aspects of early life evolution // What Is Evolution.
Bicentennial of Charles Darwin's Birth. Oct. 15-18, 2009. Kyoto University. Abstracts.
3. Fedonkin M. Hydrogen and Metal Catalysts in the Initiation and Early Evolution of
Life. In: Origins of Life and Evolution of Biospheres, Special Issue: Abstracts from the 2008
ISSOL Meeting, 2009, 39:179–392. P. 311-312.
4. Fedonkin M., Ivantsov A., Leonov M., Lipps J., Serezhnikova E. Malyutin E.I., Khan
Y.V. Paleo-piracy endangers Vendian (Ediacaran) fossils in the White Sea - Arkhangelsk region
of Russia // In: Lipps J.H. & Granier B.R.C. (eds.), PaleoParks - The protection and conservation
of fossil sites worldwide.- Carnets de Géologie / Notebooks on Geology, Brest, Book 2009/03,
Chapter 09. 2009.
5. Grey K., Yochelson E.L., Fedonkin M.A., Martin D.McB. Horodyskia williamsii new
species, a Mesoproterozoic macrofossil from Western Australia // Precambrian Research, (in
press).
6. Leonov M.V., Fedonkin M.A., Vickers-Rich P., Ivantsov A.Yu., Trusler P., Hoffmann
K.H. Discovery of the first macroscopic carbonaceous algal assemblage in the Terminal
Proterozoic of Namibia, southwest Africa // Communs geol. Surv. Namibia, 14 (2009), pp. 1-7.
7.
.
.
. .
.
.
. .:
.
).
8.
.,
.
.
.
.
.
.
. .:
.
(
).
9.
.,
.
–
//
. 2009. 91 .
10.
.
.)
.
.
,
.
.
. 2009, 580 .
11.
.
.
.
. . 17, 6. 2009.
12.
.
.
200.
.:
266
.
13.
.
14.
. ..
. 3. . 80-96. 2009,
.
. 2009. . 3-8.
.
.
.
15.
(LXXV
)
. 28-42,
.
16.
17.
18.
.
(1856-1910).
.:
.
. 2009, . 133-150.
.
.:
.
.
. 2008.
95
. . 17.
.
.
, 2009. . 155-157.
.
LV
//
.
2. . 3-6.
//
LV
//
.
-2009.
.
,
26–27
2009 .
.
. ( .). .:
.
.
, 2009. C. 24-25.
19. P. Vickers-Rich, F. Kattan, P. Johnson, M. Leonov, U. Linnemann, M. Hofmann, A.
Ivantsov, W. Kozdroj, S.M. Al Garni, A. Al Qubsani, A. Shamari, A. Al Barakati, M.H. Al Kaff, T.
Rich, M. Kozdroj, P. Trusler, B. Rich In Search of the Kingdom’s Ediacarans: Expeditions
Exploring the Neoproterozoic Jibalah Group and Related Sequences on the Arabian Shield –
1429-1430 A.H., 2008 to 2009 A.D., 2009, 37 p.
20.
.
Metazoa
//
(
XLIX
).
.
. . 2009. . 1819.
21.
.,
.
Parvancorina Glaessner //
, 2009, 1. . 14-19.
22.
.
–
//
, 2009, 6. . 3-12.
23. Zhuravlev A.Yu., Gamez Vintaned J.A., Ivantsov A.Yu. First finds of problematic
Ediacaran fossil Gaojiashania in Siberia and its origin // Geol. Mag. 146(5). 2009. S. 775-780.
24.
.
:
,
//
:
,
,
.
,
250.
.
.
. . 2009. . 96-99.
25.
.
–
Metazoa //
«
»
«
:
.
».
.
. 2009. . 155-157.
26.
.
Radiata –
// 200
1809-2009.
.
.
2009. . 47.
27.
.
–
//
-2009,
.
.
. 2009. .17-18.
267
28.
.,
.,
.,
.,
.
//
.
2009 .
(6-10
LV
).
, 2009. .122-
124.
29.
.,
.,
"200
.,
30.
.,
.,
-
//
". .116. 2009.
.,
.,
.
.
,
.,
,
//
.
40).
(
.
.
68-70.
31. Ragozina A.L., Dorjnamjaa D., Krayushkin A.V., Serezhnikova E.A. The
Neoproterozoic Dzabkhan Biota: Algae, Microfossils, Trace Fossils and Problematical Remains
from Western Mongolia // International conference on the Cambrian explosion. Abstract
Volume. M. Smith, L. O’Brien, J.-B. Caron, Eds. ICCE, Aug 3-8th 2009, Banff, Alberta,
Canada. P. 84.
32.
.
:
//
.
.
(
). 15 .
33.
.
//
«
»(
). 23 .
34. Serezhnikova E.A. Microbial binding as a probable cause of taphonomic variability
of Vendian fossils: carbonate casting? // Advances in Geobiology of Stromatolite Formation
Proceedings of the Kalkowsky Symposium held in Göttingen 2008 Reitner, Joachim, Queric,
Nadia-Valerie & Arp, Gernot (eds.) Springer-Verlag (in press). 15 p.
35.
.
:
//
.
.
:
.
.
. 2009. . 191-
193.
36.
.
//
:
,
,
.
.
.
:
,
.
250. 2009. . 218-
221.
37. Serezhnikova E.A. Attachment adaptations of Vendian sedentary organisms //
International conference on the Cambrian explosion. Abstract Volume. M. Smith, L. O’Brien, J.B. Caron, Eds. Banff, Alberta, Canada. 2009. P. 53-54.
18
,3–
268
.
,
15
,
:
:
.
,
.
,
.
.
.
,
,
.
,
.
,
.
,
.
2009 .
.
I.
.
,
.
2009 .
,
.
I,
.
,
,
–
.
.
,
,
(
)
,
.
.
.
2009 .
,
.
(
50
)
.
,
.
2009
.
,
,
.
Zeiss Axio Imager A1
AxioCam
MRc
5.
-
,
,
,
.
269
,
.
.
.
,
.
13
II.
.
.
,
,
,
-10‰,
13
2.06
1.25
.
(
Mn/Sr < 6, Fe/Sr < 15,
. (0±1‰)
,
,
18
Mn/Sr < 4, Fe/Sr < 10, 18 >
> -10‰),
,
,
,
,
1.60
.
13
.
+4.5‰,
,
.
III.
-
.
,
,
.
Palaeolyngbya,
(Siphonophycus,
Eomicrocoleus
Oscillatoriopsis, Gloeodiniopsis,
),
Archaeoellipsoides
Filiconstrictosus, Orculiphycus, Partitiofilum
–
,
.
Eosynechococcus,
Satka favosa, Kildinella hyperboreica, Leiosphaeridia crassa, Nucellosphaeridium
minitum, Protosphaeridium densum, Eomarginata striata, Germinosphaera,
Palaeoanacystis
vulgaris,
Germinosphaera,
Nucellosphaeridium,
Coniunctiophycus,
Caudosphaera, Plicatidium,
Ulophyton Majaphyton.
Satka favosa, Leiosphaeridia
crassa, Pterospermopsimorpha, Eomarginata
,
,
Satka favosa
.
.
IV.
.
2009
,
,
270
.
,
(720-570
.
,
),
.
,
,
,
.
,
,
.
,
,
,
,
,
,
.
.
,
.
3-D
.
,
.
V.
.
2009
.
,
,
.
,
:
.
,
,
,
,
.
,
(
)
,
.
,
.
.
540
VI.
.
(720 )
.
720
~540
271
.
,
.
,
720 – 670
.
)
,
.
(<660–>635
.
),
,
,
,
,
,
,
,
,
(
(~540
580
,
)
.
.
.
.
),
,
.
,
,
(
,
),
.
.
.
,
,
,
,
,
2
.
(
,
).
.
,
,
.
-
,
,
.
,
,
,
.
,
,
.
,
,
,
.
,
,
,
.
,
800
.
.
,
,
,
,
.
,
,
13
272
.
VII.
,
,
.
,
(
)
,
:
.
,
,
,
,
,
-
.
2009 .
Rb-Sr
(0.3-0.6
)
,
.
,
1Md-1M,
(1.2
,
)
Rb-Sr
0.6-1
)
,
2 1,
(0.2-0.3, 0.1-0.2
< 0.1
1Md ,
Rb/Sr.
87
Sr/ Sr = 0.7085
(
U-Pb (SHRIMP)
Rb-Sr
,
,
,
(
,
.
(
,
,
VIII.
0.3-0.6
559
.
86
.
)
(
)
)
,
)
.
.
.
Rb-Sr
K-Ar
,
in situ
,
MgCO3.
,
.
(90%),
Al2:1
(6%)
(4%)
.
,
.
Mg
.
.
1
,
180° (
(~77%),
,
2 ).
60°,
-
,
,
,
.
(4%)
Rb-Sr
K-Ar
.
273
IX.
.
,
–
.
,
,
,
.
TES Scan MV-2300
Cambrige Instruments
INCA-200
.
,
,
,
(
6 10-15
).
,
(0.1-0.2
)
,
,
.
.
CaCO3,
CaCO3
Cl
F,
,
Zr
Nd.
Na, K, Al
Cl, Na, K, Al
,
.
Mg,
.
.
,
,
,
.
X.
.
,
–
-,
.
,
,
.
,
,
,
.
,
,
,
.
–
.
.
,
274
.
,
,
.
.
,
,
–
,
.
,
,
.
,
,
,
.
275
:
:
.
,
.
.
,
,
.
.
,
,
.
.
.
,
.
,
,
(~2
,
.
).
0.4-0.8
1.5-2.0
.
,
4-6
.
,
(
2
.
).
,
0.4-0.8
1.5-2.0
(0.25-0.5
)
(
. 1).
.
,
,
4-6
(
.
)
6
,
2000
,
,
-
.
,
,
.
,
,
,
,
276
.
,
.
. 1.
(
(
;
,
, 1963;
110
43, 44, 45, 79, 75, 133 –
(
1976;
,
,
1978).
, 2001),
),
-
185 –
(14 ).
,
, 1960;
,
,
,
(
,
(
,
,
(
2007, 2008;
,
,
, 1974)
, 2006;
,
.
,
, 2009)
.
,
,
: Actinocyclus octonarius Ehr.
(Ehr.)Ehr. (
. 2)
Actinocyclus
,
Actinoptychus senarius
octonarius
,
. Actinoptychus
senarius
.
.
,
,
, Actinocyclus octonarius
,
.
.
(
.
. 2).
165
277
(
2000
1-3
)
6
,
.
,
.
,
,
Actinocyclus octonarius.
Chaetoceros
,
,
.
. 2.
,
K-86 (
:1–
)
,2–
.
1(
)
Actinocyclus octonarius
(
).
,
. 2).
,
.
Thalassiosira parva
Chaetoceros
2
,
Chaetoceros.
–
(
,
,
1982;
, 1987; Sancetta, 1981, 1982; Koç Karpuz, Schrader, 1990;
, 1997,;
Stabell, Koc , 1996;Crosta et al., 1997; Booth et al., 2002).
,
2–
,
Thalassiosira parva
Chaetoceros.
,
.
3 5
Actinoptychus senarius.
(3 , 3 , 5 , 5 ),
,
.
,
3
(
. 2).
5
Actinoptychus senarius Actinocyclus octonarius
( . 2,
5 ),
278
–
(5 ). (
. 2).
Chaetoceros,
2)
4
6(
.
,
(1-3
)
.
,
. 2).,
.
-
,
,
.
,
,
(
).
,
,
.
,
,
(
.3).
,
,
.
,
(
, 2006 ).
(
.
,
),
-
,
,
,
.
,
,
),
.
IX - VII
.
.
.
,
.
,
,
(
)
.
(
),
IX - VII
.
.
. .
,
279
.
. 3.
.
.
,
.
,
,
.
,
.
(
,
,
,
,
),
.
,
,
.
(
,
,
4).
,
.
,
280
(
., Lagurus, Eolagurus,
Bison, Equus)
,
),
.
,
(
., Mammuthus, Coelodonta).
.
., Clethrionomys, Elephas (Palaeoloxodon)),
,
,
.
(
., 2002).
,
. 4.
.
.
(
,
2-3
. 5)
.
281
,
,
.
,
.
,
.
,
,
.
–
.
,
,
(
),
.
. 5.
. Elephas (Palaeoloxodon) antiquus:
1-2
3
-5,
; 3-4
,
.
-9,
,
3
282
, 1 –
3, 3 –
,
;5–
M3,
.
t
; 5-7 –
;6–
,
; 2 –
;4–
.
28689,
;7–
,
-
,
.
–
.
,
,
.
-
,
~200 .
40-50
(
(
,
30-40
180
),
, 1988).
60-70 .
:
,
120-130
.
,
,
(
(
:
, 1978).
., 1977).
,
,
,
,
.
,
,
,
.
.
,
,
,
,
.
,
,
.
,
,
,
Pinus s/g Diploxylon (41-46 %) P. s/g Haploxylon ( 10-15 %),
22%,
5%,
,
,
.
(Ranunculaceae, Saxifragaceae, Caryophyllaceae
),
.
(
)
,
42
63%.
–
Gleicheniaceae, Aequitriradites, Pelletieria, Anemia sp.,
Coniopteris sp., C. jurassica, Cicatricosisporites sp., Cyathidites, Klukisporites sp., Lygodium
sp. Pilosisporites sp., Schizaea sp.
…, 2003)
,
,
,
–
.
Trudopollis sp., Orbicul pollis globosus, Extratriporopollenites sp., Aquilapollenites
283
sp.,
Triporopollenites
sp.
,
(
.
-14-13
89%
).
(
.
)
,
,
:
-
,
.
.
-
- –
,
.
,
.
9-8
.
,
.
.
,
,
.
.
.
,
.
1.
.,
.
//
:
.
2009 ., .
2.
.
.
.,
. 100-
).
.,
,
. .
(8–11
, 2009. . 153-156.
:
.
.,
.
//
. 820-823.
3.
.,
.,
.,
.,
, 2009,
.,
. 428,
.,
.,
/
:
:
284
, 19–23
.,
.
:
.
6,
. 6
2009 .).
.
.
:
.
.
, 2009. . 581-582.
4.
.
//
.
5.
.
.,
/
. 10.
.
, 2009. . 472-475.
:
:
.
:
. 6
.
.
.
( .
, 19–23
2009 .).
:
,
2009. . 581-582.
6. Baigusheva V., Titov V. Large deer from the Villafranchian of Eastern Europe (Sea
of Azov Region): evolution and paleoecology / The Quaternary of southern Spain: a bridge
between Africa and the Alpine domain. Abstr. of 2009 annual meeting SEQS (Orce and Lucena,
Spain, Sept. 28 - Oct. 3, 2009). Orce, 2009. P. 41-43.
7. Sotnikova M., Titov V. Carnivora of the Tamanian faunal unit (the Azov Sea area) //
Quaternary International. Vol. 201. 2009. P. 43–52.
8. Velichko A.A., Catto N.R., Kononov M.Y, Morozova T.D., Novenko E.Yu., Panin
P.G., Ryskov G.Ya., Semenov V.V., Timireva S.N., Titov V.V. and Tesakov A.S. Progressively
cooler, drier interglacials in southern Russia through the Quaternary: Evidence from the Sea of
Azov region // Quaternary International. 2009. V. 198, Is. 1-2. P. 204-219.
285
CC
,
,
:
:
.
.
,
,
.
.
.
.
,
,
.
,
.
,
.
,
.
.
,
. (
,
, 1975; Kornberg,
1995).
(
,
,
2006; 2008),
,
.
2009
,
,
.
,
,
,
(Helfenbein et. al., 2003).
,
,
,
c
,
ATP22,
Saccharomyces cerevisiae
(
1).
2.5
.
1
3.
1
2.
.
1.
S. cerevisiae
)
(
D273,
Pi
PP1
286
170 10.6
36.6 3.7
E232,
95.4 12.2
170 26.5
144 16.9
31.8 2.98
159 19.9
64.7 8.9
PP2
PP3
PP4
PP5
6.36
13.8
1.43
3.66
0.53
3.18
0.21
0.26
37.1
63.6
4.98
4.93
61.8 6.8
5.6
7.42
1.59
1.06
4.975 0.99
11.4 0.99
1.12 0.149
2.09 0.34
12.9
22.4
2.69
3.93
281 26.5
51.4 4.48
107 12
,
4.9
2.4
0.3
0.4
ATP22,
petite,
.
,
,
,
.
,
,
,
,
.
,
,
,
,
,
.
(Swiss Prot:http://kr.expasy.org/enzyme; http://www.brenda-enzymes.info/)
:
.
n + H2O
,
,
,
,
.
.
,
,
.
(
,
2005).
,
,
,
,
Ppx1
,
.
Ppn1 (
3.6.1.11),
Pi
.
CNX
Saccharomyces cerevisiae
PPX1
,
).
208.
. 1),
(
.
(
~ 208
~ 10
PPN1,
.
4
Pi
. 2,
1-7).
5
(
208
. 2),
.
.
(
. 2),
208
15
.
,
0,05
10
10
208
,
~ 0,4
S. cerevisiae
1
.
PPX1
PPN1
,
i,
.
.
75,
45,
Pi
25,
15
(10
)
90
287
(
),
~ 10
(
25
.
. 2, 8-15).
208
,
15
.
,
.
.
1
30
20
10
0
0
4
8
. 1.
S. cerevisiae
208
12
16
20
( )
CNX
Pi ( )
24
,
10
. 2.
.
.
208
3 – 10
0
288
, 4 – 30
45, 0
; 15 –
; 11 –
15, 90
, 5 – 60
45,
90
10
.
1-7 : 1–0
,2–5
,
, 6 – 4 , 7 – 24 .
8-15 –
: 8 –
; 9 –
; 10 –
75, 0
75, 90
; 12 –
; 13 –
; 14 –
25, 0
25, 90
15,
. (2006)
.
.
.
:
.
, 2006.
. (2008)
.
URSS
.
.,
. «
, 2008 . 33-57
»
.
.,
:
,
.,
:
.
, 1975.
.
,
.,
.
. (2006)
.,
:
, 2005.
, 71, 1198-1201.
. (2008)
, 73,
.,
.,
1224-1229.
Kornberg A. Inorganic polyphosphate: toward making a forgotten polymer unforgettable
// J. Bacteriol. 1995. V. 177. P. 491-496.
Helfenbein K., Ellis T., Dieckmann C., Tzagoloff A. ATP22, a nuclear gene required for
expression of the F0 sector of mitochondrial ATPase in Saccharomyces cerevisiae. J. Biol.
Chem. 2003. V. 278. P. 19751-19756.
,
2009 .
1. Ryazanova Lubov P; Suzina Natalia E; Kulakovskaya Tatiana V; Kulaev Igor S
Phosphate accumulation of Acetobacter xylinum. Archives of microbiology 2009;191(5):467-71.
2. . .
, . .
, . .
SACCHAROMYCES
CEREVISIAE
PPX1
PPN1
. 2009, . 78 3 .342-346.
3.
.
,
.
,
.
,
.
Saccharomyces cerevisiae.
. 2009 . 74.
. 8 . 1037-1041
4.
.
.
,
, .
.
,
.
.
SACCHAROMYCES CEREVISIAE
. 2010 . 79.
1.
1-4.
.
289
:
.-
.
.
.
,
,
,
,«
»,
.
.
563
90
).
(
11.4
.
3
2
.
,
,
1400
63.9 ,
22
,
)
(
,
146.8 ,
2
241
,
6.5
.
2.5
,
728
.
(pH
11)
.
,
,
,
–
,
.C
.
80-
90-
,
(
.
.
.
TAWANI-2008,
.
),
2008 .
.
I.
,
. 1).
(
)
,
.
,
,
,
.
-
,
– 15
1.0 ,
.
.
290
(
)
0.5
2.0
.
.
80 .
(
)
.
,
.
. 1.
[ Schwab, 1998, modified].
.
,
,
:
15-20
3.5
(
15
,
2.5
–
.
.
.
,
,
)
.
,
,
(
.
(
).
)
(moats)
,
.
«
»,
.
.
15
.
5
,
291
.
.
2008
.
.
,
,
20
.
,
/c
.
(
)
(
-50° ).
,
.
,
:
.
,
.
,
,
,
.
:
,
,
.
:
.
.
,
,
.
,
.
,
.
,
500
–
.
,
–
.
.
,
.
.
.
,
,
,
,
.
,
,
,
.
,
.
»,
(
.
. 1).
.
.
,
:
,
(
)
),
(
.
105
,
.
1).
.
,
,
(
500
146 ).
,
.
,
,
.
,
15.
292
,
(Eh
+350-380
Na+
(pH 9.8-12.1).
20-30 )
,
,
(
150 %
3
,
50
)
(0.11-1.06
70
).
+1° ,
(
),
SO42-.
4° .
72 .
), pH
, Eh
-50/-100
,
,
.
.
,
,
Na, K
21800
).
–
0.15
30
(
,
–
.
99
,
.
,
,
–
13-15
.
,
.
.
30
Leptolyngbya,
(
) Phormidium
,
Oscillatoria.
,
100
,
.
,
,
,
-
.
.
,
,
.
.
,
,
,
,
,
,
.
.
.
II.
USA),
(IRIS Intrepid Duo (Thermo Elemental, USA)
((Solaar MQZ, (Thermo Elemental,
).
Dowex AG 50W-X8
(
),
, Y Sc 5 (Eu, Ho, La, Lu, Y, Yb, Sc)
50 ng
293
g-1
(Er,
Gd,
Sm).
-IV,
1 ng
,
g-1
Au
Pd.
-1, MSAN, GM, TB.
,
.
.
IQ+,
,
0.100 .
CaO Fe2O3
SiO2, Al2O3,
7-8
. %.
.
.
).
(
.
3
.
(
N.
).
-3
0.002
(
0.002-0.010
)
.
.
III.
1.
.
(
(
92% )
-
,
)
(
15%).
.
.
,
,
,
(
).
(
).
.
2.
.
.
,
: 1) «
2)
»
,
.
,
,
,
.
.
(
).
.
,
.
.
,
.
294
,
,
,
,
,
,
.
,
,
.
.
,
,
,
.
(
)
,
.
,
,
,
,
,
(5–8% C
,
.
(12–19%).
85%
),
,
,
.
.
–
0.97 – 0.92)
,
,
,
(r =
,
.
,
,
(r = 0.96 – 0.97)
,
.
,
,
.
–
,
–
,
,
.
,
,
.
,
,
,
.
5; 4; 3,
(Al2O3/Fe2O3
).
–
Na2O
,
K2O (
,
. 2)
.
,
.
295
. 2.
(HM)
,
.
,
,
,
.
–
.
,
(
,
)
.
.
,
,
(
)
.
IV.
,
,
.
,
),
(
(
,
),
.
,
296
,
,
4
.
,
.
(
(
,
),
(
,
,
),
, .
.
,
).
:
.
,
.
,
.
,
I.
.
.
.
.:
«
,
«
.
) //
, 2009. . 78-82.
»
,
.
, .
,
.
,
.
XVIII
.
,
.
(
,
.
,
,
.
.
)».
297
:
:
,
.
.
,
.
.
,
.
,
.
.
,
.
.
,
.
,
,
.
.
,
.
,
,
.
.
,
,
-
,
,
.
,
(
)
,
,
,
:
.
2009 .
. 1)
,
,
,
,
. 2)
-
,
,
. 3)
(
1,
2,
.)
.
:
,
(
,
). 4)
,
.
,
,
.
1
2009
,
.
.
( .
298
,
)
,
.
(
),
,
,
,
.
.
(
.),
,
(
,
,
,
).
,
.
:
(
,
,
)
).
).
(
(
.
,
.
.
,
,
.
1soetaceae
uromia
)
.
.
.
(
,
)),
(
.).
(
(
.
,
,
),
),
«
)
,
»,
,
.
,
,
.
(
)
(
.
,
,
.
)
2.
(
),
8.8%,
2.5
3.1
.
,
,
299
.
.
,
(
,
(
)
).
,
,
,
,
,
,
.
,
.
(
,
,
.
.),
,
Chondrites,
,
,
,
,
»
,
,
,
.
,S
,
,
,
.
,
,
,
,
,
,
.
8-
(6-12
,
2009,
,
.
«Multivariable expression of OAE2 in sedimentary
),
record of northeastern Peri-Tethys»,
,
2,
.
,
,
.
,
,
.
,
,
.
,
«.
.
(
).
3
,
,
.
,
.
.
300
.
,
2008
,
18.
.
.
2009 .
15-1.
(Climate Leaf Analyses
Multivariate Program),
.
,
.
.
.
(
),
,
(
)
,
.
(
),
,
,
.
.
,
,
,
.
(
0.5 0.5 ),
.
;
30°
,
.
.
,
.
80°
.
,
,
82°
,
6.3°±2.2°
. 70
.
.
14.5°±3.1° .
- 2.0±3.9°
(
).
86
.
,
,
,
.
,
.
,
,
,
,
(
)
,
,
.
,
.
-
.
,
,
,
«
»
,
,
.
4
.
,
.
,
,
,
,
301
.
,
,
.
,
,
,
(
,
)
.
.
.
(
)
-
.
.
(
),
-
.
,
-
.
5
.
.
,
«
».
-
,
(
)
2 (
).
(10-20),
,
1
,
5.
Xitus, Novixitus, Schaafella
(Acaeniotyle, Triactoma)
(Petasiforma)
.
Pseudodyctyomitra pseudomacrocephala,
,
,
(
, 2001).
ryptocanium tuberculatum Dimitrica
,
.
,
(Schaafella tochilinae, S. dewiveri),
,
,
,
.
,«
.
6
.
,
,
.
,
302
,
),
.
,
,
.
«
»,
.
,
.
,
)
«
,
«
(
»
).
,
,
»,
,
.
7
,
,
,
,
90-
.
.
,
,
(
),
,
«
,
».
.
«
»,
,
.
.
,
.
,
(
),
,
,
.
(
)
,
,
.
:
,
,
,
.
,
.
,
.
,
,
,
,
,
.
,
.
303
8
,
,
2004 .
: 1)
.
,
2)
,
,
.
zolla.
1.0-1.6‰.
5.5‰.
,
,
.
18)
.
.
.
.
.
,
.
,
,
.
,
.
,
,
.
.
,
,
.
.
.
,
).
,
.
,
.
,
.
,
.
,
,
,
.
,
.
304
.
.
,
,
,
.
,
.
,
,
.
,
.
,
,
{
,
.
.
«
»
«
).
»
.
13
.
,
.
,
2009
.
.
.
.
7
16
.
.
305
:
,
,
,
:
:
.
.
,
,
,
.
.
,
.
.
.
,
.
.
,
.
,
,
,
.
,
,
.
.
.
.
,
.
.
,
,
.
,
.
,
.
,
,
.
,
.
,
.
(
,
)
.
-
,
,
»,
:
,
,
,
(
,
,
–
.).
,
)
,
(
)
.
.
–
,
,
,
–
.
2009 .
,
,
»
«
,
:
1.
.
,
,
,
,
,
-
,
,
.
,
(
306
–
,
),
,
–
– ,
–
,
,
.
,
,
,
.
,
.
,
–
(Batyrbaian Stage)
,
.
.
(Aisha-Bibian
,9
.
Stage).
10
(
)
–
,
.
,
.
2-3.
,
.
.
,
.
2.1.
.
.
,
.
.
,
–
(
).
.
,
,
,
,
,
,
.
,
(
).
,
(
),
,
,
—
,
,
.
,
,
.
.
–
.
307
,
–
.
,
,
,
.
,
.
.
,
)
,
(LREE),
– Batyrbay Impact Event (BIE)
.
(
,
)
.
2.2.
.
2009 .
(
,
,
).
:
,
,
.
,
,
.
.
,
,
,
,
.
.
–
,
,
,
,
,
¹³ = - 21,4 ‰,
,
(
–
,
?)
.
200 .
.
¹³
.
= 5,9‰.
,
.
(Chlorobiacea ?).
308
,
,
,
,
.
,
,
,
,
,
,
.
-
.
,
,
,
,
,
,
.
,
-
–
,
,
.
,
,
,
.
,
,
–
,
,
,
,
-
,
.
2.3.
,
,
,
,
.
,
.
,
.
,
.
,
,
,
,
,
.
,
,
.
,
,
.
.
,
.
.
,
.
,
«
«
»
»
.
309
,
»—
«
»
,
.
«
«
,
»
».
,
.
3.1.
XIX
,
–
–
.
,
,
.
(
),
.
45-55
.
(
)
.
,
.
,
.
,
,
.
,
.
–
.
,
,
.
,
,
,
.
,
–
.
,
.
,
.
6-8
,
18-20 .
)
.
.
70-
.
.
,
)
.
.
–
310
.
69
(44
–
).
,
.
,
,
,
,
,
.
,
.
,
.
3.2.
.
,
(
,
)
,
«
»
.
.
(
)
.
,
,
.
,
-
.
,
–
40
60-65
35-
,
70-75
40
.
.
).
(
,
.
,
,
,
,
.
(
).
,
.
–
-
),
–
.
—
,
,
(4-5
),
,
(
6-7
).
,
.
,
,
,
.
,
,
,
,
.
311
,
–
,
.
.
-
,
.
,
,
.
,
(
).
-
.
.
.
-
60-80 %
.
,
.
.
,
60
300
.
.
.
,
,
,
,
.
,
,
,
.
,
,
312
40 0
2009
.
.
.
:
.
.
.
15
,
,
,
,
(
)
.
,
,
,
,
,
,
-
,
,
-
-
,
,
,
,
,
,
(
,
,
).
-
(
,
),
.
,
C/N
( 25 - 31)
.
2009 .
,
,
, 13
-
25"
",
.
,
,
, .
,
,
,
15%
(10-
).
.
,
,
.
–
,
313
(
…, 2008 .).
,
.
,
,
,
.
,
,
.
.
,
,
,
.
.
,
–
–
,
–
;
,
,
,
,
–
,
,
,
;
,
,
,
).
,
,
,
2009 .
(
.
,
,
,
),
2008-2009
,
.
.
–
(
,
),
.
.
,
.
2009
.
,
;
,
;
;
.
(
,
,
).
,
,
.
.
314
13
,
/N -
13
C/N ,
(
25
–
31)
.
,
,
,
,
,
15
(>80%)
62%.
,
95%
–
,
,
.
,
.
,
70-28%
52-100%,
,
.
100-81%
13
.
,
13
, /N
2009 .
,
,
.
2009 .
,
25-
,
«
»,
,
,
,
,
,
,
,
,
,
,
,
,
,
.
,
,
.
.
2009 .
.
(210·10
(370·1012
12
)
)
.
,
27·1012
–
.
.
,
40-90%
,
,
.
.
,
,
.
.
.
(5-15%)
.
(96·1012
).
(
)
,
.
,
,
,
.
.
315
,
(25·1012
,
).
.
,
,
,
,
14·1012
,
.
.
,
(
).
8-12·10
12
,
.
.
2009 .
.
,
.
,
.
(
200)
,
.
320·106
,
2
),
(1.5-1016) – (2·1019)
3
– 100-900
;
2
,
40·106
–
(
.
– (1.5 – 2.0)·1016
15%
3
.
.
.
(
)
,
.
,
,
,
4%
.
,
21-26%.
,
,
, .
,
,
,
(10-15%
).
.
,
,
.
,
,
,
,
(
.
316
)
.
,
:
:
.
,
.
.
,
.
.
.
,
,
.
,
.
,
.
.
1.
18
.
,
,
»,
,
«
.
«
»
,
,
.
.
15
:
(1)
.
:
«
»
(
),
.
(2)
,
.
(3)
,
,
.
(4)
.
,
( )
( )
,
:
.
2009
.
15
(25-
»).
(
«
)
317
,
2-
.
2.
:
.
570
.
23
3
2008 .
.
,
,
. 1.
CTD
10
600
.
.
. 1.
25-
«
»
.
200
,
,
–
100.
,
,
0,1
37/50
180
),
2
.
Universite Paris-Sud (
.
30
, 90
.
3.
,
,
(
318
).
84
40
.
(
) +2°
200
.
.
(
3
).
:
(
),
.
(
,
3° :
+3°
0°
)
,
.
4.
,
(
. 2).
,
.
38
-58
NAPF
36
34
APF
32
30
-58.5
28
SAPF
26
24
-59
22
20
18
-59.5
16
14
12
-63.5
-63
. 2.
-62.5
-62
-61.5
-61
-60.5
-60
(
-59.5
2
-59
)
.
(
. 3).
319
2
.
9000
-58
8500
8000
7500
7000
-58.5
6500
6000
5500
5000
-59
4500
4000
3500
3000
-59.5
2500
2000
0
-63.5
-63
-62.5
-62
-61.5
-61
-60.5
-60
-59.5
. 3.
2
(
.
-59
)
.
(
2
. 4-6)
:
,
,
,
.
Diatomea
2
.
7000
-58
6500
6000
5500
5000
-58.5
4500
4000
3500
3000
-59
2500
2000
1500
1000
-59.5
500
0
-63.5
-63
. 4.
320
-62.5
-62
-61.5
-61
-60.5
-60
(
2
)
-59.5
.
-59
.
Peridinea
2
.
2200
2100
2000
1900
1800
1700
1600
1500
1400
1300
1200
1100
1000
900
800
700
600
500
400
300
200
100
-58
-58.5
-59
-59.5
-63.5
-63
-62.5
-62
-61.5
-61
-60.5
. 5.
-60
(
-59.5
2
.
-59
)
.
Nanoflagellates
2
.
750
-58
700
650
600
550
-58.5
500
450
400
350
-59
300
250
200
150
-59.5
100
50
0
-63.5
-63
-62.5
-62
-61.5
-61
-60.5
-60
-59.5
. 6.
.
.
-59
(
2
)
,
,
,
),
.
,
.
,
Copepoda (
. 8).
85
99%.
.
–
.
321
,
.
60
Oithona spp. (
90%
1
)
Ctenocalanus citer.
.
,
.
«
»
,
:
.
:
5.
(
. 7).
,
–
1,3
3
65,7
.
,
2-3
,
.
. 7.
(
3
,
)
0-200
10
3,
–
1,2
51,3
15,2
3.
65,7
3
,
–
3,7
.
23,6
.
.
(0,64)
.
322
.
. 8.
(%)
3
:
,
,
:
1.
,
: Oithona frigida, Clausocalanus spp., Subeucalanus longicornis, Euphausia frigida,
Euphausia triacantha;
2.
,
: Microcalanus pygmaeus, Oncaea spp., Rhincalanus gigas, Calanoides acutus,
Scolecithricella minor.
3.
,
1,
–
2(
+1.7 ,
).
6.
,
,
(r = 0,56, p = 0,0002): Calanus simillimus, Subeucalaanus longicornis,
Pareuchaeta spp., Ostracoda.
Microcalanus pygmaeus,
323
.
.
.
,
((r = 0,89, p < 0,00001)
.
,
(1)
(2)
:
,
,
,
.
(3)
.
(4)
,
,
.
7.
:
(
3-
),
(2-
).
(1)
:
,
(2)
,
(3)
(4)
(5)
,
,
:
(1)
(2)
(3)
.
324
«
:
:
.
,
.-
.
.
»
.
,
.
:
(
)
.
.
:
(
,
)
(
,
(
,
:
2,1-1,9
),
);
,
(
)
;
;
,
;
.
:
2,1 – 1,9
,
.
,
;
,
,
,
;
,
;
,
;
(
)
.
,
,
«
«
»,
2009 .
.
2,1-1,9
.
.
:
,
,
,
,
,
).
.
,
,
,
(
.
5
25%),
2000
,
2,0-1,9
[30].
.
.
,
, 500
»,
«
,
1949
,
,
.
-
,
,
.
,
,
325
.
,
.
,
,
.
«
-
«
»
),
(
.
.
,
»
,
,
,
.
.
,
.
,
,
.
Si/Al
6.
,
,
,
.
,
.
-
2
.
1 ,
.
»
«
,
,
.
,
,
.
.
.
,
.
,
,
;
.
,
(
),
.
.
,
.
1
.
18,1%,
76,4%,
4,0%,
,
.
,
,
1,5%.
.
.
4
[25, 12, 4].
(FA)
(
).
,
.
,
.
.
FB
600-1000
80%
,
2
.
20%
.
FB1
FB2
,
.
.
,
30
326
.
,
60
200
1000 .
:
400
1000
–
.
.
.
.
FB
FD.
(
FB
(
)
FB, FC, FD.
)
,
,
(FB),
FA.
:
. [23],
,
,
.
2
35 000
84·109
FB
.
.
,
.
,
1,98
.
,
FA.
,
.
,
,
.
FC
150
,
.
FD
,
.
FE –
.
1000
.
,
970
.
FA,
.
2,143
.
,
.
,
FB (
F .
)
FB
,
.
FA
,
.
FB.
,
,
,
,
.
,
,
.
.
,
,
,
,
,
18
15
2009 .
.
,
,
327
.
,
,
2007 .
«
–
» (ICDP),
(3265 ),
:
«
2009 .
.
»
2008-2009
.
.
-
.
.
.
,
.
.
,
(
.-
),
.
.
,
,
,
,
.
.
,
.
13
:
(
),
?
13
(
. 1).
13
.
3-4‰, . .
13
,
.
,
,
,
,
,
,
,
.
.
.
,
[1],
,
.
13
.
,
,
(
),
,
13
-23
-27‰,
,
,
=
13
-
,
-32‰.
-30
,
( )
13
[6]
( )
(
).
.
-33,50‰
-35,10‰,
=4,60‰.
-30,30‰‰
(
-31,40‰,
),
.
[26]
(
,
328
,
).
(
).
,
,
.
,
,
.
.
-31,8‰
13
27,0‰,
4,8‰.
,
[16].
,
(
,
)
,
(
).
,
.
,
13
,
.
[28]
.
-60‰,
13
–
–
-45‰,
-30‰.
13
,
,
2
12
,
.
-33‰.
16‰
),
,
13
,
-28‰,
13
13
;
6
115 ;
450 ,
13
.
,
,
(
N, O, S),
.
,
, 20%
5%
13
1].
(28,4‰),
(-29,1‰),
-27,5
-28,2‰)
,
(
,
70%
, 13 -29,0‰ [28,
(-30,2‰),
(-27,0‰).
,
,
,
.
:
13
,
,
.
,
,
[28].
,
,
,
,
.
,
,
,
,
.
,
.
,
.
,
329
13
,
.
0,4‰.
.
,
13
.
13
[8]
(
-31,9‰)
-28,1‰
30,2‰.
(-31,9‰),
,
,
13
),
13
;
,
.
13
,
.
13
,
.
,
,
(
)
-
2,5-3‰.
,
(
[24],
FB)
.
13
:
-46‰.
-21‰,
,
.
,
»
13
(
13
-33‰),
,
[24]:
FB (
-37‰
-38
-21
-46‰,
,
-29‰.
FA -28,9‰,
13
) -23,6,
-38
-46‰,
(
27,6‰,
-25,4,
FA -
)
-35,5‰.
.
.
13
-35,5‰.
13
.
:
,
;
,
1,2‰,
13
(0,14‰);
,
:
.
)
;
)
,
; )
,
,
;
,
[29];
)
,
.
(
330
. 2).
,
)
,
,
;
.
2.
13
,
,‰
-25,92 (4)
,
:
,6
, 7-9
-26,61 (7)
-26,19 (8)
-37,16 (1)
-39,50 (1)
-37,37 (4)
-43,3 (2)
,
,
,
:
–
.
,
(
),
,
.
.
.
[18]
(
)
374 .
,
,
.
,
,
,
.
–
,
,
;
.12,7%.
,
.
(
)
13
0,5
13
±0,3‰.
1,7‰,
2,2‰.
,
(365 , 808
): +3‰
+2,9‰.
,
,
,
,
,
12
.
,
(
,
. 2)
,
.
,
0,1–1
,
,
,
.
,
.
13
(
),
,
,
.
(
)
.
-26±7‰,
200
.
13
[27],
[29],
5‰,
.
,
,
331
,
,
,
.
,
,
(
).
,
,
.
–
–
,
.
(
)
.
1
,
.
,
,
-25‰,
13
:
-11‰ [14], . .
14‰.
13
:
120
–
,
,
,
(
[2]
-28,0‰).
9,2‰.
13
24,4‰; 140-150 –
, 13 -18,8‰, 350-450
13
,
,
,
,
–
-23
13
23,4‰; 180-190
,
.
-33‰
60
190
,
(2-3‰)
10‰.
,
(
300 ,
–
13
650 ).
12
,
.
13
,
-
28±2‰,
-25
-10‰ [29].
,
,
,
-30‰
,
[9]
.
2,5-2,0
-40‰ [29].
.
.
13
-39‰
-52‰.
13
(
)
.
1
.
,
13
0,1
,
,
2,1-1,0
3‰.
.
,
.
,
,
.
1
.
,
,
.
332
13
.
(-26-30‰)
(-34-41‰) –
.
,
,
13
13
,
-27‰,
=-46‰ [29],
=0,05,
–
,
50‰.
,
,
,
.
[21]
,
.
,
.
,
13
,
(
-35,4
,
-36,0‰ [22])
.
,
,
.
13
,
-33,4‰,
-33,1‰.
.
,
.
,
( 13
-17,6‰).
carb
,
13
13
.
carb,
11,8‰,
,
,
13
.
,
.
(
13
0)
.
,
,
.
2,
.
.
,
13
.
,
,
,
,
.
,
,
,
,
,
,
,
333
,
.
,
,
,
15
, 10
.
4
.
10
.
1.
. .
. 1973. . 384 .
2.
. .
.//
. 1984.
. 10. . 1530-1532.
3. Barghoorn E. S. et al. // Geochim. Cosmochim. Acta. 1977. V. 41. P. 425-430.
4. Bonhomme M. G., et al // Precambrian research. 1982. V. 18. No 1-2. P. 87-102.
5. Buseck P. R. et al. // Canadian Mineralogist. 1997. V. 35. Part 6. . 1363-1378.
6. Collister J. W. et al // Org. Geochem. 1996. V. 24. No. 8/9. P. 913-920.
7. Cortial F. et al // Org. geochem.1990. V. 15. P. 73-85.
8. Curiel J. A. // Adv. Org. Geochem. 1986. V. 10. P. 559-580.
9. Des Marais D. J. // Mineralogical soc. of Amer. Sp. iss. 2001. v. 43. P. 555-574.
10. Douthhitt C. B. // Econ. Geol. V. 77. P. 1247-1249.
11. Eichmann R. et al // Geochim. Cosmochim. Acta. 1975. V. 39. P. 585-595.
12. Gauther-Lafaye F. et al // Economic Geology. 1989. V. 84. No. 8. P. 2286-2295.
13. ayes J. M. et al // Schopf J. W. (ed). Earths earliest biosphere: its origin and
evolution. 1983. P. 93-134.
14. Hoefs J. // Geochim. Cosm. Acta. 1976. V. 40. P. 945–951.
15. Hoering T. C. // Abelson P. H. (ed.). Researches in isotope. 1967. V. 2. P. 87-111.
16. Khavari-Khorosani G. et al // Energy Sources. 1993. V. 15.P. 181-204.
17. Kump L. R. et al // Chem. Geol. 1999. V. 161. P. 181-198.
18. Lewan M. D. // Geochem. Cosm. Acta. 1983. V. 47. P. 1471-1479.
19. Mancuso I. I. et al // Precambrian Res. 1989. 44. P. 137–146.
20. McKirdy D. M. et al // Early organic evolution. Berlin. 1992. P. 176–192.
21. Melezhik V. A. et al // Earth Science Reviews. 1999. V. 47. P. 1-40.
22. Melezhik V. A. et al // Terra Nova. 2009. V. 21. . 119–126.
23. Mossman D. J. et al // Precambrian research. 2005 V. 137. P. 253-272.
24. Mossman D. J. et al // Precambrian research. 2001 V. 106. P. 135-148.
25. Mossman D. J. et al // Terra Nova. 1996. No. 8. . 114-128.
26. Ruble T. E. et al // Org. Geochem. 1994. V. 21. P. 661-671.
27. Schidlowski M. et al // Early organic evolution: implications for mineral and energy
resources. Schidlowski M. et al. (eds.). 1992. P. 147-173.
28. Stahl W. J. // Chem. Geol. 1977. V. 20. P. 121-149.
29. Strauss H. et al // Early organic evolution: implications for mineral and energy
resources. Schidlowski M. et al. (eds.).1992. P. 176-210.
30. Tyler S. A. et al // Geol. Soc. Am. Bull., 1957. V. 68. P. 1293-1304.
31. Weber F. et al // Terra Cognita. 1983. V. 3. P. 22.
334
:
:
.
,
)
.-
.
.
.
,
.
,
.
(
,
(
)
,
.
,
,
(
;
,
)
(
,
).
:
,
1.
,
.
.
2.
Eosolenides
,
.
,
,
,
–
,
.
3.
,
,
,
.
,
.
4.
,
,
,
,
.
5.
.
,
.)
,
,
(
335
«
»
),
(
)
,
(
).
,
,
(
),
,
)
(
(
,
,
)
.
1.
1.1.
,
,
(
)
(
.
,
)
,
,
.
,
,
,
.
Sphaeromorphitae
18
Netromorphytae – 4
.
Netromorphytae - 4
Acantomorphytae – 5
Acritarcha,
,
,
.
: 10
;
) (
(
5
,
(
, 2008), 5
, 2008;
,
,
,
,
,
).
,
,
.
,
,
.
,
.
,
,
.
.
(2
)
.
,
(10
.
.
,
.
Acritarcha
.
,
Cypandinia,
336
)
Maiasphaeridium.
(
),
.
,
.
.
,
.
,
,
,
(German, Podkovyrov, 2009; Podkovyrov, 2009).
(
)
,
,
(2-15
)
.
,
,
,
.
(V/Cr =0.69–1.28, Ni/Co=1.3–6.7, V/(V+Ni)=0.78-0.90)
,
,
,
;
,
.
,
(V/Cr=1.2-2.1, V/(V+Ni)=0.85-0.97)
(Podkovyrov, 2009).
1.2.
(
.,
,
(
,
Eosolenides,
. 1-3; German, Podkovirov, 2009).
,
.
),
,
.
,
–
,
.
,
,
.
,
.
(
.,
,
. 2 ).
.
Eosolenides
,
.
Eosolenides
,
,
.
337
.
,
,
.
Eosolenides
,
–
,
.
2.
2.1.
,
.
,
,
,
.
(120
11
2
,
),
.
.
,
.
14
,
.
.
-1,
–806,
-823.
–806
.
.
Leiosphaeridia sp.
.
Appendisphaera tenuis – Hamakinia sp.
.
– 823
.
-1.
– 806
.
-803.
,
acuminata
– 806.
– 806,
.
Vanavarataenia insolita
.
Cavaspina
.
– 806.
(Appendisphaera tenuis
)
,
(
).
(
, 1986
)
.).
(
,
,
,
(Vanavarataenia
,
insolita)
Cavaspina acuminata
, 1990, 1991;
,
,
).
,
,
,
.
.
338
,
,
Cavaspina acuminata
(
,
,
,
).
,
,
,
.
.
2.2.
( .
)
,
)
( .
.
,
.
).
,
(
),
,
(
)
.
,
,
(P, Y, REE).
,
,
,
,
,
,
.
,
(
(Mort et al., 2007
)
.),
,
.
–
,
( 0.5-0.7% P2O5).
,
.
(V/Cr =1.9 – 3.7)
Ni/Co (3.2-7.5)
,
.
,
(
),
,
,
.
2.3.
,
(
. 4-6).
(Grey, 2005; Willman, Moczyd owska, 2008)
(Moczyd owska et al., 1993),
Appendisphaera.
(
.,
,
,
),
.,
,
. 5-6),
Appendisphaera.
339
,
,
tabifica (
),
Appendisphaera
,
.
,
,
.
,
2008 .,
(CSEOL),
.
(
«200
4
»
,2
.
(
2009 ),
2009
).
.
2009
:
.,
.
:
//
.
LV
.
.:
, 2009. . 124-127.
German T. N. and Podkovyrov V. N. New insight into the Late Riphean Eosolenides //
Precambrian Research. 2009. V.173. P. 154-162.
Podkovyrov V.N. Mesoproterozoic Lakhanda Lagerstätte, Siberia: paleoecology and
taphonomy of the microbiota // Precambrian Research. 2009. V.173. P. 146-153.
Podkovyrov V.N., Maslov A.V., Grazhdankin D.V. Ediacarian mudstones from the
nortwestern margin of the East European platform //
,
– CMLM2009. M.:
.
, 2009. . 133.
:
.
.,
.
. 2010.
.
3(
.,
//
).
.,
.
//
.
340
.
. 2010.
3(
).
:
.
.
.
,
,
.
,
,
.
,
;
1853
2003
;
.
.
,
ICOADS
(International Comprehensive Ocean-Atmosphere Data Set) (Worley et al. 2005),
150,
1853
.
,
(NCEP/NCAR),
(ECMWF).
ECMWF
1982-2004
.
1.875 1.92 (NCEP/NCAR)
.
1.125 1.125 (ECMWF)
3
1972
6
.
,
.
341
2009
.
,
1948
2007
.
.
,
,
.
,
.
,
.
,
3-12
.
«
(
) -
»
1953-2004
.
.
.
.
,
.
(
20-
1960
2004
.).
,
.
1948-2004
.
,
6-
NCEP/NCAR
,
ECMWF
.
.
–
.
.
342
. 1
.
,
,
.
(alpha)
4-5
,
1.5-2.5.
,
1.
(alpha)
15
20%
.
(
. 1b)
,
300
2
)
2
-10
.
-100
-80
-60
-40
-20
0
20
40
60
80
100
120
140
160
-120 260
-100 280
-80
180 -160
200 -140
220 240
-100
-80
-60
-40
-20
0
20
40
60
80
100
120
140
160
180 -160
200
-140
-120 260
-100 280
-80
220 240
80
80
80
80
60
60
60
60
40
40
40
40
20
20
20
20
0
0
0
0
-20
-20
-20
-20
-40
-40
-40
-40
-60
-60
-60
-80
-80
-80
alpha, Qh, JAN
(A)
-100
-80
-60
-40
-20
0
20
40
60
80
100
120
140
160
180 -160
200 -140
220
-120
-100 280
-80
240 260
-100
-80
-60
-40
-20
0
20
40
60
80
100
120
140
160
180 -160
200 -140
220 240
-120 260
-100 280
-80
-60
(B)
-80
beta, Qh, JAN
-100
-80
-60
-40
-20
0
20
40
60
80
100
120
140
160
-100 280
-80
180 -160
200 -140
220 -120
240 260
-100
-80
-60
-40
-20
0
20
40
60
80
100
120
140
160
-120 260
-100 280
-80
180 -160
200 -140
220 240
80
80
80
80
60
60
60
60
40
40
40
40
20
20
20
20
0
0
0
0
-20
-20
-20
-20
-40
-40
-40
-40
-60
-60
-60
-80
-80
-80
(C)
-100
-80
alpha, Qe, JAN
-60
-40
-20
0
20
40
60
80
100
120
140
160
180 -160
200 -140
220
-60
(D)
-100
-120
240 260
-100 280
-80
-80
-80
beta, Qe, JAN
-60
. 1.
-40
-20
0
20
40
60
80
100
120
( , C)
(A, B)
140
160
-100 280
-80
180 -160
200 -140
220 -120
240 260
(B, D)
(C, D)
.
(
. 1b,d)
10-20
.
-40-50
3-4
(beta)
2
,
.
,
.
. 2.
103
2
(alpha).
(beta)
,
,
.
343
0
-5
Gulfstream
beta
-10
Subtropical
Atlantic
-15
-20
Tropical Atlantic
-25
-30
0
5
10
15
20
25
30
alpha
. 2.
(beta)
(alpha).
,
2
150
.
,
,
,
.
,
1948
-100
-80
-60
-40
-20
.
2004
0
20
240
.
60
80
100
120
140
160
180
-160
200
-140
220
-120
240
-100
260
300
-80
280
80
80
60
60
40
40
20
20
280
260
240
220
200
180
0
0
160
140
-20
-20
-40
-40
-60
-60
-80
-80
120
100
80
60
40
20
-100
-80
-60
-40
-20
0
20
40
60
80
100
120
140
160
. 3.
200
-160
220
-140
240
-120
260
-100
280
-80
(1948-2004),
,
NCEP/NCAR
ICOADS.
344
180
. 3
,
,
NCEP/NCAR
ICOADS.
,
,
,
2
300
.
,
6-
,
1948-2004
NCEP/NCAR
.
,
,
2
±18
,
.
.
,
,
.
,
,
.
.
,
,
,
,
–
4
,
,
,
.
WOCE
CLIVAR,
,
,
.
. 4.
2 2
ICOADS
« .
» (re-sampling),
1.5 1014
1,
.
–
.
. 4
1,
.
,
.
.
.
345
30
-100
-80
-60
-40
-20
80
60
26
1
40
24
20
-100
0
20
80
4
28
3
-80
-60
-40
60
2
-20
40
20
20
0
22
wind speed, m/s
20
-200 to -50
-50 to -30
-30 to -20
-20 to -10
-10 to -5
-5 to -2
-2 to -0.15
0.15 to 2
2 to 5
5 to 10
10 to 20
20 to 30
30 to 50
50 to 100
100 to 200
18
16
14
12
10
8
6
4
2
0
-10
-8
-6
-4
-2
0
2
4
6
8
10
12
14
16
18
20
Tw-Ta
. 4.
(
1
).
(1014
).
,
.
,
,
0.14
14
10
,
6
(0.81
1014
,
).
,
.
,
0.5
1.3%
.
,
1853
).
(
.
25
,
.
,
.
1980-1920
,
,
.
,
,
.
0.2
346
4%,
2
±7
.
.
WMO1100
Lindau (1995),
.
,
.
.
.
,
,
,
,
,
,
.
120-
,
1880
.
(
)
.
-100
70
-90
-80
-70
60
-60
-50
-40
-30
-20
-10
0
10
+4
50
40
-6
30
Qh
2ePDF-trad
20
10
0
Jan
1880-2002
-10
-20
-100
-90
-80
)
-70
-60
-50
70
-100
70
60
60
50
50
40
40
30
30
20
20
10
10
0
0
20
-90
-80
-30
-20
-10
0
10
20
-20 -20
-100
-60
-50
-40
-30
-20
-10
0
10
20
70
60
+7
50
40
-9
30
Qe
2ePDF-trad
20
10
0
Jan
1880-2002
-10 -10
-40
-70
-90
-80
-70
-60
-10
-50
-40
-30
. 5.
,
-20
(
1980-2002
-10
0
-20
20
10
)
.
.
,
.
,
.
,
,
,
,
,
.
.
347
(da Silva et al. 1994, Josey et al. 1999, Lindau 2000).
,
.
Dobson and Smith (1988), Lind et al. (1984), Reed (1981),
Bignami (1995)
.
,
.
.
.
«
–
»,
.
,
,
.
,
Reynolds and Smith (1994, 1996), Yu et al.
(2004, 2006), Kent and Brohan (2005).
.
,
1948-1950
.
,
,
,
.
«NEMO-ORCA»
OPA-
,
9.1
.
,
(Madec et al. 2005),
(Tregurier et al. 2004, Barnier et al. 2006,
«NEMO-ORCA»
DRAKKAR.
c
2007).
.
,
–
31
67
1/12° 1/12°.
(2°, 0.5°, 0.25°, 1/6°, 1/12°).
2° 2°
5
NEMO-ORCA
1950
2006
.
,
.
–
(Barnier et al.
1995, arnier 1998, Gulev et al. 2003, 2007)
348
(Large and Yager 2004, 2006, Boening et al. 2007).
.
(
,
(
,
)
,
,
.
,
,
,
,
Qnet (t )
©
Qnet
(t )
)
.
,
Q
SST (t ) TS (t ) ,
T
Q’net(t) –
Q
),
–
T
30
55
(
,
.
,
:
(1)
(
,
(Barnier et al. 1995, Gulev et al. 2007),
2
·K-1, SST(t)
,
TS(t) –
)
,
.
.
,
,
.
(Gulev et al. 2007)
,
,
,
,
.
.
,
,
,
.
(
.
2)
,
.
.6
7
,
,
,
.
349
. 6.
(
3
)
. 7.
(
3
)
.
.
7
,
(1).
,
.6
7
.
1° 1°
1/6° 1/6°.
,
.
(
,
)
1/12° 1/12°
1/15° 1/15°,
:«
?».
.
350
,
,
,
,
.
Latif et al. (2006)
,
–
.
2
, 0.25
2° 2° (
1/6
.
)
«
»
,
.
,
±1
,
4-8
.
.
,
,
,
.
1.
1º
1/6º ATL6
(after Chelton et al., 1998)
ATL1
.
ATL1
ATL6
1/6°
18.5
1°
111.0
230
ATL6:
ATL1:
20°
.
17.3
103.8
55
ATL6:
ATL1:
45°
.
13.0
78.0
30
ATL6:
ATL1:
60°
.
9.3
55.5
10
ATL6:
ATL1:
1
.
,
1/6º,
45º
,
,
.,
.
1º
,
,
.
,
,
.
,
351
–
.
.
,
(
,
,
)
.
,
20-
,
,
.
30
,
(Koltermann et al. 1999, Falina et al. 2006,
. 2003).
. 8
ATL6
ATL1
1º
.
1/6º.
,
(
3.4 c,d),
.
,
,
,
.
,
,
.
.
2007), Marsh et al. (2005).
Gulev et al. (2003,
,
»
.
.9
,
2007).
1° 1° 1/6° 1/6° (Gulev et al.
1° 1°
,
.
,
,
1/6° 1/6°
,
,
.
,
.
,
,
.
352
. 8.
,
T,S –
1º
,
–
–
.
–
1/6º
, D –
,
–
1/6º
1/6º
. STMW –
.
,
, SPMW –
–
1/6º 1º
, LSW
1/15° 1/15° (Gulev et al. 2007).
Gent and
0
1200
McWilliams (1990) (GM-90),
2
2
.
. 10
.
,
800
1/3° 1/3°
2
2
1/6° 1/6°
.
353
.
1/4
1/12
.
1/6
.
,
,
,
.
1/12
.
.
–
.
8
.
.
5-7
3
.
,
.
.
,
1980,
.
1990,
.
.
CLIPPER
,
.
.
,
.
.
.
,
.
.
.
,
1/6º
,
.
,
1/6º
,
.
354
. 9.
( ),
1° 1° (
)
1/6° 1/6° (
) (Gulev et al. 2007).
355
.
10.
1/15° 1/15° (
)
1/3° 1/3° (
1/3° 1/3°
)
.
Gent and McWilliams
(1990).
356
:
.
.
.
2009
.
,
.
,
Makkaveev, 2007)
(
,
, 2005,
, 2008;
,
.
,
.
,
.
.
,
,
,
,
,
.
.
:
;
, 1970).
(
,
.
–
,
.
,
–
(
)
«
.
(
,
,
»
).
.
,
,
(
,
).
.
,
.
357
,
:
1.
,
(
).
,
,
.
2.
,
(
).
,
,
.
3.
,
,
,
,
.
,
(
,
)
,
Ca/Mg
, 1960; Berner, 2004).
,
,
(
(
., 2005).
,
,
,
,
.
,
,
).
.
8,23
8,02
. (
,
.(
400
)
).
(
)
7,95
8,32
-1
274
448
.
2
.
1,75
3,40
,
,
,
30
40 1018
.
.
.
,
,
.
,
.
,
)
(
.
,
:
(1)
,
.
2
.
)
:
,
358
(
,
;
–
.
2
,
«
»
.
,
.
,
,
.
,
(
…, 2008).
.
,
,
,
.
,
2
.
3.5
Ctot
(
3.0
)
,
2.5
2.0
,
1.5
.
. 1.
440
pCO2
400
90 –
360
120
320
.
2
280
25, 140, 260
240
44
.
M Coc
350
2
5, 130, 240,
40
330
36
410
.
32
28
500
400
300
200
100
,
0
,
2008)
40
. 1.
1
(
20-30
(
.2).
–
(
2
1018
(
)
;
-1
2
); 3 –
..
–
,
–
.
359
25000
96
40
92,3
)
(2003)
.
20000
(ppm2
,
15000
.
10000
92
39
.
,
,
5000
(400
39,6
)
23,1
125
0
0.001
0.01
0.1
(
-1
,
1
)
.
100
,
)
92,3
,
80
,
.
2
23,1
(
39,6
,
60
,
.
40
,
13
11
9
20
,
0
0.001
0.01
0.1
(
-1
(
1
.2)
)
,
20
pCO2.
92,3
)
92
.
16
. pH2
.
, 40
(
12
.
,
pCO2.
8
39,6
.
4
23,1
18
23,
0
0.001
0.01
0.1
(
-1
1
13, 11
9
.
.
,
)
. 2.
pCO2, Ctot
pCO2
pH
.
,
,
.
.
360
,
,
,
,
.
,
,
–
,
2
.
(1960).
.
.
,
,
,
2
.
,
,
2
.
(
100
10
, 1999)
19
.
2,
4
)
(
. (
70
, 2000).
.
,
2.
4
.
,
.
.
,
,
.
,
,
.
.
.
–
«
.
»
,
,
,
(
, 2009).
,
.
,
,
, 2001).
,
-
(
),
,
,
,
.
.
6,
,
(
)
,
.
,
,
361
.
,
,
, 2002; Bond et al., 1993; Pelejero et al., 2005).
(
, 2008)
(
, 2002),
.
.
362
,
,
:
:
.
,
.
.
.
,
.
,
.
.
,
,
,
,
.
,
.
50
,
.
,
.
,
.
.
.
1.
..
,
,
.
,
.
,
5-20%,
4-8%
,
–
(4-5%
(
(Si, P, C
,
.
,
10%
)
).
, CO2)
363
2.
,
,
),
,
.
.
(
,
,
,
,
:
(10-20
,
,
,
.1),
15
(
,
).
,
),
(1.5-2
,
16
,
,
100
(3-6
,
),
),
,
,
,
.
,
.1,
,
.
,
,
,
,
,
,
,
,
,
,
.
,
,
,
,
,
,
,
,
,
,
,
,
,
,
.
1.
(
)
Si
Al
1.0
30
8.5
760
2.2
3.4
9.0
53
11
86
3.0
100
14
3.0
2.9
29
19
250
29
17
63
17
44
1.0
8.8
11
1.8
27
8.8
560
2.4
1.1
5.3
61
17
100
5.9
100
20
2.8
3.8
31
44
470
18
12
84
29
93
0.2
3.6
14
1
Ag
As
Au,
Ba
Be
Bi
Cd
Ce
Co
Cr
Cs
Cu
Ga
Ge
Hf
La
Li
Mn
Mo
Nb
Ni
Pb
Rb
Re
Sb
Sc
364
1.7
34
4.9
540
1.6
2.5
8.3
50
11
45
4.1
55
13
1.2
2.2
22
24
500
16
2.9
41
26
39
0.5
6.8
5.9
1.6
30
7.6
590
2.1
2.0
6.9
58
14
81
4.8
87
17
2.4
3.5
28
33
440
20
10
67
26
68
0.4
5.6
11
2
1.7
58
9.7
630
2.6
1.8
6.2
55
18
93
4.2
140
17
2.5
4.5
26
37
1100
14
15
67
25
76
0.8
5.3
12
oc
0.07
10
1
800
3
0.01
0.3
73
20
100
12
57
30
2
6
32
60
700
2
20
96
20
200
0.3
1.5
13
2
oc
24
5.8
9.7
0.8
0.9
180
21
0.7
0.9
0.9
0.3
2.4
0.6
1.2
0.7
0.8
0.6
1.6
7
0.7
0.7
1.2
0.4
3
3.5
0.9
,
,
Se
Sn
Sr
Ta
Te
Th
Ti
Tl
U
V
W
Y
Zn
Zr
8
5
480
0.17
4.2
3.9
1200
0.7
10
99
8.1
12
140
74
Ca
:
,
Si
12
4
140
0.55
0.3
5
2100
4.8
13
250
21
25
160
120
Al
6.6
6.6
200
0.8
1.7
7.4
399
2.6
14
20
2.4
29
140
150
7.8
5.6
290
0.66
2.1
7.2
2700
2.5
13
180
7.8
23
140
120
9.3
5.7
230
0.8
1.8
7.8
2800
2.2
9.9
180
2.7
23
160
200
0.1
10
450
3
1
12
4300
1
3.2
130
10
26
80
200
93
0.6
0.5
0.3
2
0.6
0.6
2
3
1.4
0.3
0.9
2
1
-
,
,
-
,
1
-
2
.
,
.
,
–
.
.
.2,
.
,
50%
,
(
,
(
,
(
,
,
,
,
,
,
-
),
,
,
)
,
,
,
).
2.
(
.
( ),
.
.
( ),
.
Al
.
( ),
Si
)
.
,
.
,
.
Ag
As
Au,
Ba
Be
Bi
Cd
Ce
Co
Cr
Cs
Cu
Ga
0.23
15
1.3
400
0.40
0.09
0.64
19
28
17
1.1
47
3.1
0.13
0.44
1.0
0.75
0.4
0.04
0.08
0.4
2.5
0.6
0.5
0.85
0.2
0.43
20
4.6
570
1.4
0.30
1.6
33
20
57
4.3
155
12
0.24
0.8
0.52
1.0
0.6
0.3
0.3
0.54
1.2
0.6
0.7
1.5
0.6
0.60
20
740
0.75
0.11
40
17
5.5
120
2
50
6.2
0.6
0.67
1.0
0.3
0.03
4.4
0.3
0.5
1.4
0.7
0.5
0.4
0.54
17
260
1.65
0.15
225
33
4.5
92
9.2
44
9.8
0.68
28
235
1.9
1.0
21
39
37
86
3.6
42
7.8
365
Hf
La
Li
Mn
Mo
Nb
Ni
Pb
Rb
Re
Sb
Sc
Se
Sn
Sr
Ta
Te
Th
Ti
Tl
U
V
W
Y
Zn
Zr
0.52
9.7
13
270
48
7.2
59
7.2
15
0.049
1.3
4.8
0.57
1300
0.20
2.7
1000
0.17
19
80
0.54
13
40
33
0.24
0.4
0.54
0.54
3.0
2.5
1.4
0.3
0.4
0.1
0.2
0.8
0.1
2.7
1.0
0.7
0.83
0.24
1.9
0.8
0.07
1.1
0.3
0.44
:
Si
,
(
.
2.6
17
42
180
122
5.5
130
18
60
0.15
3
11
7.6
1.2
220
0.40
0.21
7
2200
0.75
20
230
2.1
21
100
80
Al
0.7
0.55
1.0
0.54
6.8
0.46
1.5
0.6
0.65
0.75
0.8
0.8
1.1
0.2
1.1
0.5
0.2
0.75
0.56
0.3
1.4
1.2
0.9
0.7
1.1
0.5
0.75
12
18
83
80
5
120
6
28
0.15
0.65
5.4
3.1
1.2
140
0.33
6
900
1.25
44
140
1.3
12
95
35
0.25
0.4
1.0
0.33
2.7
0.3
1.9
0.35
0.64
0.15
0.07
0.5
0.25
0.3
1.0
0.6
1.2
0.4
0.26
3.4
0.6
0.06
0.5
0.6
0.3
-
1.3
17
32
225
40
10.5
50
12.5
96
3
6.4
2.5
2.0
300
0.35
7
2150
1.3
15
100
1.5
15
85
50
1.5
18
13
1630
24
3.2
120
16
52
0.10
3
9.2
2.3
2.5
690
0.26
<0.7
4.4
1800
3.6
50
110
2.1
33
60
67
,
-
.1).
;
,
,
,
,
,
,
,
,
,
,
.
,
–
,
,
,
,
.
,
,
.
:
,
;
,
,
.
,
,
,
.
27
.
(
),
,
16,
,
,
,
,
,
,
,
.
,
,
.
18
,
Ba) –
(Mo, Ni, U, V, Cd, Cr,
,
;
14
(Li, Rb, Cs),
,
366
7,
,
.
-
:
20
,
(Co, Cu, Mo, Ni,
.
10
Pb, Zn, V, Bi, Se, Sc)
,
–
.
17
.
17
(
. Mn, Co, Pb, Sb, Sn, Bi,
–
(Ba, Cd, Cr, Mo, Zn).
.
,
(Mn, Bi, Cd, Sn, Sr, Tl)
(Ba, Ga, Li, Cu, Mo, Se, Sn).
.
)
5
21
,
,
,
,
,
,
.
,
,
,
–
,
,
,
.
3.
1.
15
Au, Mo, As, Sb, U, Re, Cu, Te, Tl, V, Zn)
2.
.
.
3.
(Bi, Se, Ag, Cd,
100
.
,
-
.
4.
,
.
367
:
.
.
.
–
(
)
-
:
,
,
,
.
.
.
,
,
.
.
.
,
.
,
.
.
,
.
,
,
.
.
.
,
.
,
.
(
)
-
:
, Ni-
,
,
13
(
),
,
(Keller et al., 1995).
,
,
(
),
,
.
.
.
,
,
.
,
368
.
,
,
,
.
,
,
.
,
.
(Keller et al., 2002)
,
:
(
).
,
,
,
,
,
,
(Pospichal, 1996) (
.1).
. 1.
(
.527)
(
.690) (
Pospichal, 1996,
).
13
(
,
. 2).
369
. 2.
,
,
(
(~70-67
,
Pospichal, 1996,
).
.),
,
.
,
,
,
,
.
,
90%
,
(D’Hondt et al., 1996).
,
.
.
,
.
,
(Alegret et al., 2004).
2.
90%
,
70%
.
.
.
,
.
,
(Jeffery, 2001).
,
.
,
,
–
370
(Hansen et al., 2004).
,
,
.
,
,
-
(Surlyk, Johansen, 1984).
,
(
,
,
),
.
.
,
,
,
,
.
,
.
13
?
.
.
(~68.5-65.5
,
.)
18
6°C.
,
,
.
87
Sr/86Sr.
.
,
(Hallam, Wignall, 1997).
,
,
,
,
,
,
,
),
.
,
(
, 1988
,
)
,
,
,
.
:
(
)
.
,
,
–
,
.
)
. (Alvarez et al., 1980).
(
65
).
.
.
,
.
,
10
25
.
.
–
,
,
,
,
.
(
180
280
65
.
)
.
371
,
«
»,
.
.
(Alvarez et al., 1980),
,
,
.
,
,
.
.
.
CaCO3
CaSO4,
),
CO2
.
,
,
.
,
,
.
,
,
.
100(Alvarez,
,
,
, 1000
,
1987).
:
(
,
),
,
,
,
,
,
,
(Carlissle, Braman, 1993)
.
.
,
(
. 3)
.
,
,
,
.
.
Textulariina spp.
Osangularidae
Gavellinellidae
.
1500-1800
,
(Spiroplectammina spp.).
,
.
50
.
.
,
.
,
,
,
.
372
,
,
. 3.
.
–
(
(
(
25
0.6
)
eugubina)
),
;
,
–
–
(Montanari, Koeberl, 2000).
. 4.
:
,
2004,
Yax-1
(
Keller et al.,
)
373
, 60
1511
,
2001-2002 .
. 4).
. Yax-1
(
617100,
.
,
.
( Keller et al., 2004),,
,
(65.4–65.2
700
.)
.
,
.
,
.
200
,
.
600
540
,
,
;
,
(Urrutia-Fucugauchi et al., 2004).
(
)
6.1
;
(Shipley et al., 2004).
,
,
.
. 5)
,
(
(Chatterjee, 1997;.Chatterjee et al., 2003).
.
600 450
.
,
(65
.
12
,
,
.)
(
29R),
.
,
.
.
40
,
65
.
,
,
.
374
. 5.
(
Chatterjee, 1997,
)
,
.
9 (S-L9)
21
,
,
10-
5
.
(Chatterjee,, 1997).
: 40.
,
,
(87%
. DSDP 576;
,
–
,
KT-
,
)
(Kyte et al., 1994).
,
,
,
,
,
,
,
«
,
,
.
».
,
,
,
,
,
,
.
.
.
,
.
1-2
.
,
(Bhandari et al.,
-
1994).
,
.
,
.
(48°45'
,
.
30 .
., 32°10'
.)
,
.
,
24
375
1
25000
220 ,
12-97 .
65.17 ± 0.64
.
,
,
.
«
» -
.
Ar-Ar
,
,
.
,
.
.
.
(Gurov et al., 2006),
(42° 35'
., 94° 33' .)
(Frankel, 1999).
100-
,
35
.
-
.
10
.
,
12
4
.
.
.
.
,
.
,
«Earth Impact database, PASSC»
,
1988 . Ar-Ar65.7±1
. .
.
(69.6º
., 64,9º .),
1970.
(Badjukov et al. 1992;
.
.
73.8±0.3
.
.
,
Trieloff et al., 1998;
.
.).
,
.
,
120
,
,
,
.
,
10
,
(Frankel, 1999)
,
(Earth Impact Database. Univ. of New Brunswick)
1-2
66
.
. .
70.3±2.2
. .
2001 .
,
,
(Silverpit)
20
60-65
1500
.
(Stewart, Allen, 2002).
40 .
50-300
.
,
.
.
120
3
,
.
,
65-60
.
65
.
.
,
74-45
,
,
,
.
.
,
(25°57'
376
(49°42'
(Eagle Butte).
.
,
., 52°41' .)
., 110°30'
.),
10
.
(Vista Alegre)
9.5
.
.
65
(Crósta et al., 2004).
.
(
),
,
.
,
,
,
,
,
,
,
.
,
.
,
,
.
,
.
.
.
(SO2, HCl,
,
,
,
,
2)
pH
,
,
(Hallam, 1987).
,
,
,
,
2.
(
2,
10
)
,
(Wignall, 2001).
,
(Sahni et al., 1994).
. (Wilf et al., 2003),
)
(
(
)
.
,
65.8-65.6
66.0-65.9
.,
.
.
.
pCO2
,
,
~0.5
. .
pCO2
,
,
,
~1.5
. .
pCO2
.
.
CO2
,
,
.
,
,
,
,
.
,
(Tschudy, Tschudy, 1986).
,
,
,
,
–
.
(
,
,
CO2
,
,
.).
,
,
,
.
-
377
.
,
,
,
(Chatterjee, Rudra, 1996),
,
.
1
,
.
.
(
–
.
(Bhandari et al., 1994).
.
)
,
,
.
,
.
26-30
. . .,
,
35, 65
95
.
,
.
. . .
2-3
,
,
,
,
(Taylor, Cordes, 1993).
–
30±3
. .
.
,
.
,
,
(Rampino, Haggerty, 1995).
378
-
:
.
.
.
,
,
,
,
(Hemithyris psittacea
.
Glaciarcula spitzbergensis),
(Elliott, 1956),
(
)–
, 1997 ).
(
«
»(
. 1),
.
,
,
,
,
,
.
(
., 2005;
–
.
-
, 2008),
,
,
.
«
»
(
. 3, 4).
(
,
. 2),
,
,
.
Novocrania anomala (
(
Nymphon giltayi,
«
», 54-
) Cryptopora gnomon (
( . 5).
,
, 2007 .)
.
379
:
. 1.
(
–
,
,
–
, 1978).
–
;
–
“
”:
–
,
–
;
.
. 2.
Herman, 1989).
380
(
. 3.
300-500
(
, 1960).
. 4.
… 2008).
381
. 5.
Novocrania anomala,
.
,
.
382
– Cryptopora gnomon.
–
–
. 6.
. 1. Terebratulina retusa, 2. Macandrevia cranium, 3. Dallina septigera
,
Terebratulina retusa, Dallina septigera,
Macandrevia cranium,
,
(
. 6),
,
.
,
(
,
)
,
),
383
.
.
.
spitzbergensis
Glaciarcula
Hemithyris psittacea.
)
–1,720
. G. spitzbergensis
32,68 ‰ (
, 1990),
G. spitzbergensis
.
13
,
«
10,2
(
»
, 1997 ).
H.
psittacea
.
-1,840 .
,
(
30
, 1999).
(
23
,
)
,
12
-
13
.
,
8,
,
5
(
H. psittacea
,
,
,
7
. 7).
,
,
,
(
., 2009).
:
7
390
,
.
.
,
.
(Pycnogonida)
.
,
,
.
.
(
.8).
,
,
,
,
.
14
Nymphon
9,
.
(Herman, 1989;
., 2005)
,
:
-
–
(
.
. 2)
,
.
,
,
.
,
.
384
,
,
,
,
,
.
.
,
,
(
),
.
.
(
)
(
. 9, 10).
)
).
Colossendeis angusta (
Ascorhynchus abyssi (
«
Achelia
:
Achelia borealis neotenica
-
«
»
»
,
Achelia borealis japonica
( . 11, 12).
. 7.
(“
Hemithyris psittacea
”, 54, 2007 , . 4988).
. 8.
Nymphon
.
385
. 9.
,
I
(
Colossendeis angusta
, 1929).
. 10.
Colossendeis angusta
5450
, 1989).
386
.
I
(
,
,
,
,
.
,
(
)
,
,
,
).
. 11.
, 1933.
Achelia borealis japonica
. 12.
”, 54-
-
Achelia borealis neotenica
, 2007 .
387
Download