Молекулярный контроль плюрипотентности - Транс

advertisement
38
Îáçîðû
Ìîëåêóëÿðíûé êîíòðîëü ïëþðèïîòåíòíîñòè
À.Ñ. Ãðèãîðÿí, Ï.Â. Êðóãëÿêîâ
ÎÎÎ «Òðàíñ-Òåõíîëîãèè», Ñàíêò-Ïåòåðáóðã
Molecular control of pluripotency
A.S. Grigorian, P.V. Kruglyakov
Trans-Technologies Ltd., Saint-Petersburg
Ýìáðèîíàëüíûå ñòâîëîâûå êëåòêè (ÝÑÊ) çà ñ÷åò ñâîèõ óíèêàëüíûõ ñâîéñòâ (ñàìîîáíîâëåíèÿ ïîïóëÿöèè è ïëþðèïîòåíòíîñòè), îáëàäàþò áîëüøèì ïîòåíöèàëîì â îáëàñòè ðåãåíåðàòèâíîé ìåäèöèíû.
 ïîñëåäíèå ãîäû â íàó÷íîé ëèòåðàòóðå ïîÿâëÿåòñÿ âñå áîëüøå ïóáëèêàöèé, ïîçâîëÿþùèõ ïðåäñòàâèòü, êàêèì îáðàçîì ïðîèñõîäèò
ïîääåðæàíèå èäåíòè÷íîñòè êëåòîê âíóòðåííåé êëåòî÷íîé ìàññû
áëàñòîöèñòû (ÂÊÌ) â óñëîâèÿõ in vivo, à òàêæå ïîëó÷àåìûõ èç ÂÊÌ
ÝÑÊ in vitro; êàêèå ìîëåêóëÿðíûå ìåõàíèçìû îòâå÷àþò çà êîíòðîëü
èõ ñâîéñòâ è îïðåäåëÿþò èõ êîììèòèðîâàíèå è äèôôåðåíöèðîâêó
â ñïåöèàëèçèðîâàííûå òèïû êëåòîê. Öåëü íàñòîÿùåãî îáçîðà – ñóììèðîâàòü è ïðîàíàëèçèðîâàòü íàêîïèâøèåñÿ ñâåäåíèÿ î ãåíåòè÷åñêèõ è ýïèãåíåòè÷åñêèõ ôàêòîðàõ, ó÷àñòâóþùèõ â ïîääåðæàíèè
ñâîéñòâ ýìáðèîíàëüíûõ ñòâîëîâûõ êëåòîê ìëåêîïèòàþùèõ.
Self-renewal capacity and pluripotency are the unique features of
embryonic stem cells (ESCs), that possess a prominent potential in
the field of regenerative medicine. There are growing amount of data
describing cell identity within inner cell mass of blastocyst in vivo and
within ESCs population in vitro. Molecular mechanisms that are
responsible for cells commitment and differentiation into specialized
cell types are intensively studied. The aim of this review is to summarize
the existing data about genetic and epigenetic mechanisms of
mammalian embryonic stem cell self-renewal and pluripotency
maintenance.
Êëþ÷åâûå ñëîâà: ýìáðèîíàëüíûå ñòâîëîâûå êëåòêè, âíóòðåííÿÿ
êëåòî÷íàÿ ìàññà, ñàìîîáíîâëåíèå, ïëþðèïîòåíòíîñòü, Nanog, Oct4,
Sox2.
Key words: embryonic stem cells, inner cell mass, self-renewal,
pluripotency, Nanog, Oct4, Sox2.
Ââåäåíèå
Ýìáðèîíàëüíûå ñòâîëîâûå êëåòêè (ÝÑÊ), ïîëó÷àåìûå èç
êëåòîê âíóòðåííåé êëåòî÷íîé ìàññû áëàñòîöèñòû (ÂÊÌ),
õàðàêòåðèçóþòñÿ äâóìÿ îñíîâíûìè ñâîéñòâàìè: ñàìîîáíîâëåíèåì ïîïóëÿöèè è ïëþðèïîòåíòíîñòüþ, òî åñòü ñïîñîáíîñòüþ äèôôåðåíöèðîâàòüñÿ â êëåòêè ïðèìèòèâíîé ýíòîäåðìû, ïðèìèòèâíîé ýêòîäåðìû è òðîôýêòîäåðìû, êîòîðûå
çàòåì äàþò íà÷àëî âñåì òèïàì êëåòîê âíåýìáðèîíàëüíûõ è
ýìáðèîíàëüíûõ òêàíåé, à òàêæå òêàíåé âçðîñëîãî îðãàíèçìà
[1]. Ïî ýòîé ïðè÷èíå îíè îáëàäàþò îãðîìíûì ïîòåíöèàëîì
â ñôåðå ðåãåíåðàòèâíîé ìåäèöèíû. Âìåñòå ñ òåì, òðàíñïëàíòàöèè ÝÑÊ â îðãàíèçì æèâîòíûõ ñ ýêñïåðèìåíòàëüíî
èíäóöèðîâàííûì èììóíîäåôèöèòîì ïðèâîäÿò ê ôîðìèðîâàíèþ òåðàòîì – ïåðâè÷íî äîáðîêà÷åñòâåííûõ îïóõîëåé,
âêëþ÷àþùèõ â ñåáÿ ïðîèçâîäíûå òðåõ çàðîäûøåâûõ ëèñòêîâ: ýêòîäåðìû, ìåçîäåðìû è ýíòîäåðìû [2]. Ïîíèìàíèå
ìîëåêóëÿðíûõ ìåõàíèçìîâ, îïðåäåëÿþùèõ õàðàêòåðèñòèêè
ÝÑÊ, ïîçâîëèëî áû óïðàâëÿòü ïðîöåññàìè ïîääåðæàíèÿ
ïëþðèïîòåíòíîñòè è çàïóñêà äèôôåðåíöèðîâêè ýòèõ êëåòîê â îïðåäåëåííûõ íàïðàâëåíèÿõ, èñêëþ÷èâ âåðîÿòíîñòü
îáðàçîâàíèÿ îïóõîëåé.
 ïîñëåäíèå ãîäû â íàó÷íîé ëèòåðàòóðå ïîÿâëÿåòñÿ âñå
áîëüøå ïóáëèêàöèé, ïîçâîëÿþùèõ ñîñòàâèòü ïðåäñòàâëåíèå
î òîì, êàêèì îáðàçîì ïðîèñõîäèò ïîääåðæàíèå èäåíòè÷íîñòè êëåòîê âíóòðåííåé êëåòî÷íîé ìàññû áëàñòîöèñòû
(ÂÊÌ) â óñëîâèÿõ in vivo äî íà÷àëà êîììèòèðîâàíèÿ è äèôôåðåíöèðîâêè, à òàêæå ÝÑÊ â ïðåäåëàõ ïîïóëÿöèè in vitro
[3, 4]. Öåëü îáçîðà – ñóììèðîâàòü è ïðîàíàëèçèðîâàòü íàêîïèâøèåñÿ íà ñåãîäíÿøíèé äåíü ñâåäåíèÿ î ãåíåòè÷åñêèõ
è ýïèãåíåòè÷åñêèõ ôàêòîðàõ, çàäåéñòâîâàííûõ â ïîääåðæàíèè ñâîéñòâ ýìáðèîíàëüíûõ ñòâîëîâûõ êëåòîê ìëåêîïèòàþùèõ.
çàâèñèò, â êàêîé ïîñëåäîâàòåëüíîñòè áóäóò äèôôåðåíöèðîâàòüñÿ ÝÑÊ è êàêèå èç íèõ ñîõðàíÿò ïëþðèïîòåíòíîñòü íà
áîëåå äëèòåëüíûé ïåðèîä (ðèñ. 1). Ãîìåîäîìåííûå òðàíñêðèïöèîííûå ôàêòîðû Oct4 (òàêæå íàçûâàåìûé â ëèòåðàòóðå Oct3, ëèáî Pou5f1) è Nanog ñ÷èòàþòñÿ ìíîãèìè
àâòîðàìè êëþ÷åâûìè ðåãóëÿòîðàìè ïëþðèïîòåíòíîñòè è ýêñïðåññèðóþòñÿ â ïëþðèïîòåíòíûõ ëèíèÿõ ÝÑÊ in vitro, ÷òî
áûëî ïîêàçàíî äëÿ êëåòîê ÷åëîâåêà è ìûøè [5-7] (ðèñ. 2).
Ñóùåñòâóåò ãèïîòåçà, ïðåäïîëàãàþùàÿ, ÷òî ñîâìåñòíî ñ
ôàêòîðîì FoxD3 îíè ôîðìèðóþò ñèñòåìó ðåãóëÿöèè òðàíñêðèïöèè ñ îòðèöàòåëüíîé îáðàòíîé ñâÿçüþ, ïîääåðæèâàÿ è
îãðàíè÷èâàÿ ýêñïðåññèþ äðóã äðóãà [8] (ðèñ. 3).
Ïîäàâëåíèå ýêñïðåññèè Oct4 ïðèâîäèò ê ðàííåé äèôôåðåíöèðîâêå ÂÊÌ áëàñòîöèñòû in vivo è ÝÑÊ in vitro â
òðîôýêòîäåðìó, â òî âðåìÿ êàê ãèïåðýêñïðåññèÿ ýòîãî ôàêòîðà âûðàæàåòñÿ â äèôôåðåíöèðîâêå ÝÑÊ â ïðèìèòèâíûå
ýíòîäåðìó è ìåçîäåðìó. Òàêèì îáðàçîì, äëÿ ïîääåðæàíèÿ
ïëþðèïîòåíòíîñòè ýêñïðåññèÿ Oct4 â êëåòêàõ äîëæíà ñòðîãî êîíòðîëèðîâàòüñÿ è ïîääåðæèâàòüñÿ íà îïðåäåëåííîì
óðîâíå [9-11]. Oct4 ðåãóëèðóåò ýêñïðåññèþ òêàíåñïåöèôè÷åñêèõ ãåíîâ, âçàèìîäåéñòâóÿ ñ äðóãèìè ôàêòîðàìè, à
èìåííî - c FGF-4 (fibroblast growth factor-4), ñïåöèôè÷íûì äëÿ ÝÑÊ [12], Sox2 (high mobility group box protein Sox2)
[13].
Ôàêòîð Nanog áûë îïèñàí â 2003 ãîäó èññëåäîâàòåëÿìè
èç íàó÷íîé ãðóïïû I. Chambers. [14]. Äî íàñòîÿùåãî âðåìåíè
ñ÷èòàëîñü, ÷òî îí íà îïðåäåëåííîì óðîâíå ïîñòîÿííî ýêñïðåññèðóåòñÿ â êëåòêàõ ÂÊÌ è ÝÑÊ , à åãî îòñóòñòâèå ïðèâîäèò ê
óòðàòå ïëþðèïîòåíòíîñòè è íåìåäëåííîé äèôôåðåíöèðîâêå
ñòâîëîâûõ êëåòîê â ïðèìèòèâíóþ ýíòîäåðìó [14, 15]. Îäíàêî
â íàñòîÿùåå âðåìÿ ïîêàçàíî, ÷òî åãî ýêñïðåññèÿ íå êîíñòèòóòèâíà è èçìåíÿåòñÿ â ïðîöåññå ýìáðèîãåíåçà, ìîäóëèðóÿ
ñïîñîáíîñòü ÝÑÊ ê îáðàçîâàíèþ ñïåöèàëèçèðîâàííûõ òèïîâ
êëåòîê; à ïðè èñêóññòâåííîì áëîêèðîâàíèè ýêñïðåññèè
Nanog â ÝÑÊ íå ïðîèñõîäèò íåìåäëåííîé àêòèâàöèè ïðîöåññîâ äèôôåðåíöèðîâêè è êëåòêè ñîõðàíÿþò ïëþðèïîòåíòíîñòü, ïîëíîñòüþ óòðà÷èâàÿ, îäíàêî, ñïîñîáíîñòü äàâàòü
íà÷àëî ëèíèè ïåðâè÷íûõ ïîëîâûõ êëåòîê [16-18].
Ãåíåòè÷åñêèé êîíòðîëü ïëþðèïîòåíòíîñòè:
ôàêòîðû Oct4, Nanog è Sox2
 ïðîöåññå ýìáðèîíàëüíîãî ðàçâèòèÿ ïðîèñõîäèò ïîñòåïåííîå èçìåíåíèå ñïåêòðà òðàíñêðèïöèîííûõ ôàêòîðîâ,
äåéñòâóþùèõ â ðàçëè÷íûõ êëåòî÷íûõ ïîïóëÿöèÿõ. Îò ýòîãî
Êëåòî÷íàÿ òðàíñïëàíòîëîãèÿ è òêàíåâàÿ èíæåíåðèÿ Òîì III, ¹ 2, 2008
Îáçîðû
39
Ðèñ. 1. Èçìåíåíèå ýêñïðåññèè òðàíñêðèïöèîííûõ ôàêòîðîâ â ïðîöåññå ýìáðèîíàëüíîãî ðàçâèòèÿ. Oct4, Nanog è Sox2
ýêñïðåññèðóþòñÿ â ëèíèÿõ ïëþðèïîòåíòíûõ êëåòîê. Ïîêàçàíû ôàêòîðû, îòâåòñòâåííûå çà ðàçâèòèå òðîôýêòîäåðìû (Ñdx2),
ýêñòðàýìáðèîíàëüíîé ýíòîäåðìû (Gata6) è ñîìàòè÷åñêèõ êëåòî÷íûõ ëèíèé (GCNF) [ïî Johnson B.V. et al., 2006 ñ èçì.]
Ðèñ. 2. Èçìåíåíèå ñîîòíîøåíèÿ êîíöåíòðàöèé Oct4 è Nanog â ïëþðèïîòåíòíûõ ÝÑÊ ìûøè ïðèâîäèò ê ïîòåðå èëè ìîäèôèêàöèÿì
èõ ñâîéñòâ. Ïðè ðàâíûõ âíóòðèêëåòî÷íûõ êîíöåíòðàöèÿõ ýòèõ ôàêòîðîâ è ýêçîãåííîé ñòèìóëÿöèè LIF ÝÑÊ ñïîñîáíû
ê ñàìîîáíîâëåíèþ. Äåëåöèÿ Nanog ïðèâîäèò ê äèôôåðåíöèðîâêå ÝÑÊ â ïðèìèòèâíóþ ýíòîäåðìó, äåëåöèÿ Oct4 –
ê äèôôåðåíöèðîâêå â òðîôýêòîäåðìó. Ïîâûøåíèå êîíöåíòðàöèè Oct4 íà 50% âûçûâàåò îáðàçîâàíèå èç ÝÑÊ ñìåøàííîé
ïîïóëÿöèè, â êîòîðîé ïðèñóòñòâóþò êëåòêè ýíòîäåðìàëüíîãî è ìåçîäåðìàëüíîãî ïðîèñõîæäåíèé. Äî íàñòîÿùåãî âðåìåíè
íå èçâåñòåí ôåíîòèï ÝÑÊ, â êîòîðûõ îäíîâðåìåííî ïîâûøåíû óðîâíè Oct4 è Nanog [ïî Chambers I. et al., 2004 ñ èçì.]
Êëåòî÷íàÿ òðàíñïëàíòîëîãèÿ è òêàíåâàÿ èíæåíåðèÿ Òîì III, ¹ 2, 2008
40
Îáçîðû
Ðèñ. 3. Ñõåìà âçàèìîäåéñòâèÿ ôàêòîðîâ ñàìîîáíîâëåíèÿ.
À. Oct4 è Nanog íåîáõîäèìû äëÿ ïîääåðæàíèÿ
ñàìîîáíîâëåíèÿ ÝÑÊ. Ïðåäïîëàãàåìàÿ ìîäåëü
ðåãóëÿòîðíîé ñèñòåìû, âêëþ÷àþùåé Oct4, Nanog è FoxD3.
FoxD3 è Nanog ÿâëÿþòñÿ ïîçèòèâíûìè ðåãóëÿòîðàìè
òðàíñêðèïöèè Oct4, â òî âðåìÿ êàê Oct4 ïîäàâëÿåò
ñîáñòâåííóþ ýêñïðåññèþ è ýêñïðåññèþ Nanog.
Á. Ñõåìàòè÷åñêàÿ äèàãðàììà âçàèìîäåéñòâèÿ Oct4,
Nanog è FoxD3 [ïî Pan G. et al., 2006 ñ èçì.]
ïîäàâëåíèþ òðàíñêðèïöèè Nanog, ÿâëÿåòñÿ Laminin-b1 [25].
Èç ýòîãî ìîæíî çàêëþ÷èòü, ÷òî íåêîòîðûå ôàêòîðû, ôóíêöèè
êîòîðûõ ñ÷èòàþòñÿ õîðîøî èçâåñòíûìè è íå ñâÿçàííûìè ñ
ïîääåðæàíèåì ñâîéñòâ ýìáðèîíàëüíûõ ñòâîëîâûõ êëåòîê,
ìîãóò òàêæå ó÷àñòâîâàòü â ïîääåðæàíèè ïëþðèïîòåíòíîñòè
è ñàìîîáíîâëåíèÿ.
Oct4, Sox2 è Nanog ñ÷èòàþòñÿ ôàêòîðàìè, îòâåòñòâåííûìè êàê çà ïëþðèïîòåíòíîñòü, òàê è çà âûáîð ïóòè äèôôåðåíöèðîâêè ÝÑÊ. Îíè îïðåäåëÿþò ýêñïðåññèîííûå
ïàòòåðíû òðàíñêðèïöèîííûõ ôàêòîðîâ, ýêñïðåññèðóþùèõñÿ
â êëåòêàõ ÂÊÌ ïî ïðîõîæäåíèè ýìáðèîíîì ñòàäèè áëàñòîöèñòû è â ÝÑÊ ïðè èõ êîììèòèðîâàíèè ê äèôôåðåíöèðîâêå.
Ñîâðåìåííûå äàííûå ïîçâîëÿþò ñîñòàâèòü äîâîëüíî ïîäðîáíóþ ñõåìó êîíòðîëÿ ïëþðèïîòåíòíîñòè. Êàðòèðîâàíèå
ñàéòîâ ñâÿçûâàíèÿ Oct4 è Nanog â ÄÍÊ ýìáðèîíàëüíûõ
ñòâîëîâûõ êëåòîê ÷åëîâåêà è ìûøè [7, 25] ïîçâîëèëî âûÿâèòü ðÿä ãåíîâ, ñ êîòîðûìè âçàèìîäåéñòâóþò Oct4, Nanog è
Sox2, à òàêæå îöåíèòü ñòåïåíü âëèÿíèÿ êàæäîãî èç ýòèõ ôàêòîðîâ íà ïðîöåññû ðàçâèòèÿ, ïîñòðîèâ, òàêèì îáðàçîì,
èåðàðõèþ òðàíñêðèïöèîííûõ ôàêòîðîâ, äåéñòâóþùèõ â ÝÑÊ
(ðèñ. 4). Îäíàêî òàêàÿ èåðàðõèÿ, êàê ïîêàçûâàþò ìíîãèå ðàáîòû, íå óíèâåðñàëüíà, è î íåé ìîæíî ãîâîðèòü òîëüêî ïðèìåíèòåëüíî ê êàæäîìó îòäåëüíîìó âèäó æèâûõ îðãàíèçìîâ
[26], ÷òî âûíóæäàåò ê îñòîðîæíîé èíòåðïðåòàöèè äàííûõ,
ïîëó÷åííûõ íà ìîäåëüíûõ îáúåêòàõ, ïðè îáúÿñíåíèè ïðîöåññîâ, ïðîèñõîäÿùèõ â ÝÑÊ ÷åëîâåêà.
Òàêèì îáðàçîì, ñóùåñòâóåò îãðàíè÷åííûé íàáîð êëþ÷åâûõ òðàíñêðèïöèîííûõ ôàêòîðîâ, õàðàêòåð ýêñïðåññèè
êîòîðûõ ñóùåñòâåíåí äëÿ ðàííèõ ýòàïîâ ðàçâèòèÿ ýìáðèîíà è äèôôåðåíöèðîâêè ÝÑÊ â êóëüòóðå. Â òî æå âðåìÿ ýôôåêòû ýòèõ áåëêîâ íåîäèíàêîâû â óñëîâèÿõ in vivo è in vitro,
òàê êàê, ïî-âèäèìîìó, ñóùåñòâóþò äî íàñòîÿùåãî âðåìåíè
íåèçâåñòíûå ìåõàíèçìû, èãðàþùèå âàæíóþ ðîëü â çàïóñêå
òåõ èëè èíûõ ñèãíàëüíûõ ïóòåé â êëåòêàõ.
Ñàìàÿ ïðîñòàÿ ìîäåëü ðàáîòû áåëêîâ Oct4, Nanog è Sox2
ïðåäïîëàãàåò, ÷òî ýòè ôàêòîðû ñîâìåñòíî îïðåäåëÿþò äàëüíåéøåå ðàçâèòèå ÝÑÊ, âçàèìîäåéñòâóÿ ñ äðóãèìè òðàíñêðèïöèîííûìè ôàêòîðàìè, îòâåòñòâåííûìè çà äèôôåðåíöèðîâêó (òàáë.). Òàê, íàïðèìåð, áûëî ïðîäåìîíñòðèðîâàíî,
÷òî áàëàíñ Oct4 è ãîìåîäîìåííîãî áåëêà Cdx2 âëèÿåò íà
äèôôåðåíöèðîâêó ÝÑÊ â êëåòêè òðîôýêòîäåðìû [19]. Oct4
è Cdx2 ÿâëÿþòñÿ àíòàãîíèñòàìè, ïîäàâëÿÿ ýêñïðåññèþ äðóã
äðóãà. Oct4 îòâåòñòâåíåí çà îáðàçîâàíèå ÂÊÌ, èç êîòîðîé
ïîëó÷àþò ÝÑÊ, â òî âðåìÿ êàê Cdx2 íåîáõîäèì äëÿ ðàçâèòèÿ
òðîôýêòîäåðìû [20]. Oct4 è Cdx2 òàêæå ðåãóëèðóþò ðàáîòó
áåëêà ýîìåçîäåðìèíà (eomesodermin), êîòîðûé íåîáõîäèì
äëÿ ðàçâèòèÿ òðîôýêòîäåðìû [10]. Èç ýòîãî ìîæíî çàêëþ÷èòü, ÷òî äëÿ ïåðâè÷íîé ñåãðåãàöèè ÂÊÌ è òðîôýêòîäåðìû
òðåáóåòñÿ ñî÷åòàííîå äåéñòâèå ïî êðàéíåé ìåðå òðåõ òðàíñêðèïöèîííûõ ôàêòîðîâ.
Ïîõîæèì îáðàçîì áàëàíñ óðîâíåé ôàêòîðà Nanog è
ïðîäóêòîâ öåëîãî ðÿäà ãåíîâ: Cdx2, Gata2, hCG-α è hCG-β
îïðåäåëÿåò äèôôåðåíöèðîâêó ÝÑÊ â òðîôýêòîäåðìó [21],
à ñîîòíîøåíèå êîíöåíòðàöèé Nanog, Gata4 è Gata6 ðåãóëèðóåò äèôôåðåíöèðîâêó ÝÑÊ â ýíòîäåðìàëüíîì íàïðàâëåíèè.
Ïîâûøåíèå ýêñïðåññèè Gata4 è Gata6 â êëåòêàõ ÂÊÌ âåäåò
ê èõ äèôôåðåíöèðîâêå â ýíòîäåðìàëüíîì íàïðàâëåíèè, ÷òî
ïðîèñõîäèò è ïðè ïîäàâëåíèè ýêñïðåññèè Nanog, êîòîðûé, â
÷àñòíîñòè, ÿâëÿåòñÿ íåãàòèâíûì òðàíñêðèïöèîííûì ðåãóëÿòîðîì ýêñïðåññèè Gata4 è Gata6 [15, 17, 21, 22-24]. Ñëåäóåò îòìåòèòü, ÷òî Gata4 è Gata6 íå ÿâëÿþòñÿ åäèíñòâåííûìè
àíòàãîíèñòàìè Nanog, îïðåäåëÿþùèìè äèôôåðåíöèðîâêó â
ýíòîäåðìàëüíîì íàïðàâëåíèè. Îäíèì èç ìåíåå óïîìèíàåìûõ ãåíîâ, ýêñïðåññèÿ êîòîðîãî â ÝÑÊ ÷åëîâåêà ïðèâîäèò ê
Ýïèãåíåòè÷åñêèé êîíòðîëü ïëþðèïîòåíòíîñòè
 äàííîì ñëó÷àå ïîä «ýïèãåíåòè÷åñêèìè» ðàññìàòðèâàþòñÿ âíóòðèêëåòî÷íûå ôàêòîðû ðåîðãàíèçàöèè õðîìàòèíà,
îêàçûâàþùèå âëèÿíèå íà ýêñïðåññèþ ãåíîìà. Ðåîðãàíèçàöèÿ õðîìàòèíà ÿâëÿåòñÿ íåîòúåìëåìîé ÷àñòüþ àêòèâàöèè
ãåíåòè÷åñêèõ ïðîãðàìì, ðåàëèçàöèÿ êîòîðûõ îïðåäåëÿåò
íàïðàâëåíèå äèôôåðåíöèðîâêè ñòâîëîâûõ êëåòîê êàê in vivo,
òàê è in vitro [26-28]. Íàïðèìåð, õðîìàòèí â ÝÑÊ ïðåäñòàâëåí â îñíîâíîì òðàíñêðèïöèîííî àêòèâíûì ýóõðîìàòèíîì,
÷òî ïîäòâåðæäàåòñÿ íàëè÷èåì áîëüøîãî êîëè÷åñòâà àöåòèëèðîâàííûõ ãèñòîíîâ è ïîâûøåííîé ÷óâñòâèòåëüíîñòüþ õðîìàòèíà ê íóêëåàçàì.  òî æå âðåìÿ êîììèòèðîâàíèå êëåòîê
ñîïðîâîæäàåòñÿ ïîíèæåíèåì ñòåïåíè àöåòèëèðîâàíèÿ ãèñòîíîâ è ñîïóòñòâóþùèì óâåëè÷åíèåì ïðîöåíòà íåàêòèâíîãî
ãåòåðîõðîìàòèíà. Òàêèì îáðàçîì, îãðàíè÷åíèå ïëþðèïîòåíòíîñòè òåñíî ñâÿçàíî ñ óìåíüøåíèåì ïëàñòè÷íîñòè ãåíîìà
ÝÑÊ [28].
Àíàëèç èçìåíåíèé îðãàíèçàöèè õðîìàòèíà â ÝÑÊ äåìîíñòðèðóåò âûñîêóþ ñòåïåíü äèíàìè÷åñêîé àññîöèàöèè
ñòðóêòóðíûõ ïðîòåèíîâ (îñíîâíûõ è âàðèàáåëüíûõ ãèñòîíîâ,
ëèíêåðíîãî ãèñòîíà H1, ãèñòîíà H3, à òàêæå ïðîòåèíà, àññîöèèðîâàííîãî ñ ãåòåðîõðîìàòèíîì – HP1α) ñ õðîìàòèíîì
ïëþðèïîòåíòíûõ ÝÑÊ â îòëè÷èå îò õðîìàòèíà äèôôåðåíöèðîâàííûõ êëåòîê. Çàìåíà ãèñòîíà H1 åãî ìîäèôèêàöèåé,
èìåþùåé áîëåå âûñîêîå ñðîäñòâî ê ÄÍÊ, ïðèâîäèò ê èíãèáèðîâàíèþ äèôôåðåíöèðîâêè ÝÑÊ; â òî âðåìÿ êàê çàìåíà
ãèñòîíà H3 åãî ìîäèôèêàöèåé H3.3, ÿâëÿþùåéñÿ ìàðêåðîì
àêòèâíîé òðàíñêðèïöèè, óñêîðÿåò äèôôåðåíöèðîâêó ÝÑÊ
[29]. Èç ýòîãî ìîæíî ñäåëàòü âûâîä, ÷òî ñòðóêòóðíûå áåëêè õðîìàòèíà â ÝÑÊ ñëàáî ñâÿçàíû ñ ÄÍÊ, îáåñïå÷èâàÿ
áûñòðóþ ðåîðãàíèçàöèþ õðîìàòèíà â ïðîöåññå äèôôåðåíöèðîâêè.
Êëåòî÷íàÿ òðàíñïëàíòîëîãèÿ è òêàíåâàÿ èíæåíåðèÿ Òîì III, ¹ 2, 2008
41
Îáçîðû
Òàáëèöà. Òðàíñêðèïöèîííûå ôàêòîðû, îïðåäåëÿþùèå ïëþðèïîòåíòíîñòü ÝÑÊ è èõ äèôôåðåíöèðîâêó
[ïî äàííûì Boyer L.A. et al., 2006; Kehler J. et al., 2004; Maruyama M. et al., 2005;
Shi W. et al., 2006; Suzuki A. et al., 2006]
Òðàíñêðèïöèîííûé
ôàêòîð
Ðåçóëüòàò ïîäàâëåíèÿ ýêñïðåññèè
Ïàòòåðí ýêñïðåññèè
â ýìáðèîíàëüíîì
ðàçâèòèè
â ÝÑÊ
Ôóíêöèÿ
Oct4
Ýêñïðåññèðóåòñÿ â îâîöèòå,
â îïëîäîòâîðåííîé
ÿéöåêëåòêå, êëåòêàõ ÂÊÌ,
ýïèáëàñòå, ÝÑÊ, êëåòêàõ
ýìáðèîíàëüíîé êàðöèíîìû
è ëèíèè ïåðâè÷íûõ ïîëîâûõ
êëåòîê
Ãèáåëü ýìáðèîíîâ íà
ñòàäèè áëàñòîöèñòû,
äèôôåðåíöèðîâêà
êëåòîê ýïèáëàñòà
â òðîôýêòîäåðìó,
àïîïòîç ïåðâè÷íûõ
ïîëîâûõ êëåòîê
Ïîòåðÿ
ïëþðèïîòåíòíîñòè,
äèôôåðåíöèðîâêà
â òðîôýêòîäåðìó
Äèôôåðåíöèðîâêà
â ýíòîäåðìàëüíîì
è ìåçîäåðìàëüíîì
íàïðàâëåíèÿõ
Nanog
Ýêñïðåññèðóåòñÿ â êëåòêàõ
ìîðóëû, ÂÊÌ, ýïèáëàñòà,
ÝÑÊ, ýìáðèîíàëüíîé
êàðöèíîìû è ëèíèè
ïåðâè÷íûõ ïîëîâûõ êëåòîê
Ãèáåëü ýìáðèîíîâ,
íåäîðàçâèòèå
ýïèáëàñòà,
äèôôåðåíöèðîâêà ÂÊÌ
â òðîôýêòîäåðìó, áëîê
ðàçâèòèÿ ëèíèè
ïåðâè÷íûõ ïîëîâûõ
êëåòîê
Ïîòåðÿ
ïëþðèïîòåíòíîñòè,
äèôôåðåíöèðîâêà
â ïðèìèòèâíóþ
ýíòîäåðìó
LIF-íåçàâèñèìîå
ñàìîîáíîâëåíèå
ïîïóëÿöèé ÝÑÊ,
óñòîé÷èâîñòü
ê èíäóêöèè
äèôôåðåíöèðîâêè
ðåòèíîåâîé êèñëîòîé,
áëîêèðîâàíèå
äèôôåðåíöèðîâêè
ÝÑÊ â
ìåçîäåðìàëüíîì
íàïðàâëåíèè,
èíäóöèðîâàííîé
ôàêòîðîì BMP
Sox2
Ýêñïðåññèðóåòñÿ â îâîöèòå,
ÂÊÌ, ýïèáëàñòå, ëèíèè
ïåðâè÷íûõ ïîëîâûõ êëåòîê,
ìóëüòèïîòåíòíûõ êëåòêàõ
âíåçàðîäûøåâîé ýêòîäåðìû,
êëåòêàõ-ïðåäøåñòâåííèöàõ
íåðâíîé òêàíè, ýíòîäåðìå
Ãèáåëü ýìáðèîíîâ
â ñâÿçè
ñ íåñïîñîáíîñòüþ
îáðàçîâûâàòü ýïèáëàñò
Íàðóøåíèå ýêñïðåññèè
ãåíîâ Fgf4 è Fbx15
–
Sox15
Ýêñïðåññèðóåòñÿ â îâîöèòå,
ÂÊÌ, ýïèáëàñòå, ëèíèè
ïåðâè÷íûõ ïîëîâûõ êëåòîê,
ìóëüòèïîòåíòíûõ êëåòêàõ
âíåçàðîäûøåâîé ýêòîäåðìû,
êëåòêàõ-ïðåäøåñòâåííèöàõ
íåðâíîé òêàíè, ýíòîäåðìå
Ýìáðèîíû ðàçâèâàþòñÿ
íîðìàëüíî
Íàðóøåíèå ýêñïðåññèè
ôàêòîðîâ Otx2, Ctgf,
Ebaf, Hrc
–
Stat3
Ýêñïðåññèðóåòñÿ
áîëüøèíñòâîì òèïîâ êëåòîê
êàê íåäèôôåðåíöèðîâàííûõ,
òàê è äèôôåðåíöèðîâàííûõ
Ãèáåëü ýìáðèîíîâ
íà ñòàäèè áëàñòîöèñòû
Äèôôåðåíöèðîâêà
â ïðèìèòèâíóþ
ýêòîäåðìó è ìåçîäåðìó
(ïîêàçàíî äëÿ ÝÑÊ
ìûøè)
LIF-íåçàâèñèìîå
ñàìîîáíîâëåíèå
ïîïóëÿöèé ÝÑÊ
Cdx2
Ýêñïðåññèðóåòñÿ â íàðóæíûõ
êëåòêàõ ìîðóëû, à òàêæå
êëåòêàõ òðîôýêòîäåðìû
Ãèáåëü ýìáðèîíîâ
íà ñòàäèè èìïëàíòàöèè
Îñòàíîâêà
äèôôåðåíöèðîâêè
â òðîôýêòîäåðìó
Äèôôåðåíöèðîâêà
ÝÑÊ â êëåòêè
òðîôîáëàñòà
Gata6
Ýêñïðåññèðóåòñÿ â êëåòêàõ
âíåçàðîäûøåâîé ýíòîäåðìû
Ãèáåëü ýìáðèîíîâ
â ñâÿçè ñ äåôåêòàìè
ôîðìèðîâàíèÿ
âèñöåðàëüíîé
ýíòîäåðìû
–
Äèôôåðåíöèðîâêà
ÝÑÊ â
ýíòîäåðìàëüíîì
íàïðàâëåíèè
Gata4
Ýêñïðåññèðóåòñÿ â êëåòêàõ
âíåçàðîäûøåâîé ýíòîäåðìû
Ãèáåëü ýìáðèîíîâ
â ñâÿçè ñ äåôåêòàìè
ìîðôîãåíåçà ñåðäöà
Íåñïîñîáíîñòü ÝÑÊ
äèôôåðåíöèðîâàòüñÿ
â êëåòêè âèñöåðàëüíîé
ýíòîäåðìû
Äèôôåðåíöèðîâêà
ÝÑÊ â
ýíòîäåðìàëüíîì
íàïðàâëåíèè
Rex-1
Ýêñïðåññèðóåòñÿ
èñêëþ÷èòåëüíî â êëåòêàõ
ÂÊÌ è â òåðàòîêàðöèíîìàõ,
îáðàçóþùèõñÿ èç ÝÑÊ
–
–
–
Êëåòî÷íàÿ òðàíñïëàíòîëîãèÿ è òêàíåâàÿ èíæåíåðèÿ Òîì III, ¹ 2, 2008
42
Îáçîðû
Ðèñ. 4. Èåðàðõèÿ òðàíñêðèïöèîííûõ ôàêòîðîâ, îòâå÷àþùèõ çà ïëþðèïîòåíòíîñòü
è äèôôåðåíöèðîâêó ÝÑÊ ìûøè è ÷åëîâåêà [ïî Boyer L.A., 2006 ñ èçì.]
Êëåòî÷íàÿ òðàíñïëàíòîëîãèÿ è òêàíåâàÿ èíæåíåðèÿ Òîì III, ¹ 2, 2008
Îáçîðû
Ñ ýòèì ñîãëàñóåòñÿ òîò ôàêò, ÷òî òêàíåñïåöèôè÷íûå ãåíû
â ãåíîìå ÝÑÊ íàõîäÿòñÿ â ñîñòîÿíèè ïîäàâëåííîé àêòèâíîñòè.
Èõ àêòèâàöèÿ ïðè êîììèòèðîâàíèè ÝÑÊ ïðîèñõîäèò î÷åíü
áûñòðî, òàê êàê â ÝÑÊ ïîñòîÿííî ïðèñóòñòâóþò àêòèâíûå
ýïèãåíåòè÷åñêèå ðåãóëÿòîðû [30, 31].
Ó÷àñòêè ÄÍÊ â ÿäðàõ ÝÑÊ, ñîäåðæàùèå ìíîãèå òêàíåñïåöèôè÷íûå ãåíû, îáðàçóþò êîìïëåêñû ñ òàê íàçûâàåìûìè
áèâàëåíòíûìè ñòðóêòóðíûìè ïðîòåèíàìè, ñîñòîÿùèìè èç
ñóïðåññîðíîãî ãèñòîíà H3K27me3 è àêòèâèðóþùåãî ãèñòîíà H3K4me3. Ýòî ïðèâîäèò ê áûñòðîìó ïåðåêëþ÷åíèþ
òðàíñêðèïöèîííûõ êàñêàäîâ â ïðîöåññå ýìáðèîíàëüíîãî
ðàçâèòèÿ [32, 33]. Ñëåäóåò îòìåòèòü, ÷òî áîëüøèíñòâî ãåíîâ-ìèøåíåé Oct4, Sox2 è Nanog íàõîäÿòñÿ â ñîñòàâå òàêèõ
áèâàëåíòíûõ äîìåíîâ â ÄÍÊ, ÷òî îáåñïå÷èâàåò èõ áûñòðóþ
ðåãóëÿöèþ (àêòèâàöèþ è ñóïðåññèþ) êàê â ïðîöåññå ðàçâèòèÿ áëàñòîöèñòû in vivo, òàê è ïðè êóëüòèâèðîâàíèè ÝÑÊ in
vitro [25, 33-34]. Òàêæå ñëåäóåò ïðèíèìàòü âî âíèìàíèå
ó÷àñòèå â ðåãóëÿöèè èõ ýêñïðåññèè õðîìàòèí-ðåìîäóëèðóþùèõ òðàíñêðèïöèîííûõ ðåïðåññîðîâ èç ñåìåéñòâà
Polycomb-áåëêîâ (PcG), êîòîðûå ìîãóò èíäóöèðîâàòü êàê
ëîêàëüíûå, òàê è ãëîáàëüíûå ïåðåñòðîéêè ñòðóêòóðû õðîìàòèíà, òåì ñàìûì âëèÿÿ íà ýêñïðåññèþ ãåíîìà.
Ðîëü PcG-ôàêòîðîâ â ïîääåðæàíèè ñâîéñòâ ÝÑÊ
PcG-ãåíû âêëþ÷àþò ïî êðàéíåé ìåðå äâà ðàçëè÷íûõ
ðåïðåññîðíûõ êîìïëåêñà (PRC1 è PRC2-PRC3), ñòðîåíèå
êîòîðûõ êðàéíå êîíñåðâàòèâíî [37]. Ðîëü èõ â ïîääåðæàíèè ïëþðèïîòåíòíîñòè ñâÿçàíà ñ ó÷àñòèåì â ôîðìèðîâàíèè ïàòòåðíà ýêñïðåññèè ãåíîâ, îòâå÷àþùèõ çà ïåðâûå ýòàïû
ðàçâèòèÿ ýìáðèîíà in vivo [38-45], ôîðìèðîâàíèå ïëþðèïîòåíòíûõ ëèíèé ÝÑÊ â êóëüòóðàõ in vitro [40] è ïîääåðæàíèå
íåäèôôåðåíöèðîâàííîãî ñîñòîÿíèÿ ñòâîëîâûõ êëåòîê
âçðîñëîãî îðãàíèçìà [42, 43].
Èññëåäîâàíèÿ, ïðîâåäåííûå íà ÝÑÊ ÷åëîâåêà è ìûøè,
ïîêàçàëè, ÷òî PRC1 è PRC2 ñâÿçûâàþòñÿ ñ øèðîêèì ñïåêòðîì ãåíîâ, ïðåäñòàâëÿþùèõ ñîáîé òðàíñêðèïöèîííûå è ñèãíàëüíûå ôàêòîðû, ðîëü êîòîðûõ â ðàçâèòèè èçâåñòíà. Ãåíû,
ñâÿçàííûå ñ PcG-ïðîòåèíàìè, â ñâîåé ïðîìîòîðíîé îáëàñòè òàêæå ñîäåðæàò ãèñòîí H3K27me3, ÷üÿ ñóïðåññèâíàÿ
àêòèâíîñòü êàòàëèçèðóåòñÿ PRC2. Òàêèì îáðàçîì, PcGôàêòîðû ÿâëÿþòñÿ ñóïðåññîðàìè òðàíñêðèïöèîííîé àêòèâíîñòè òêàíåñïåöèôè÷åñêèõ ãåíîâ â ÝÑÊ [33, 35].  îòñóòñòâèè
îäíîãî èç êîìïîíåíòîâ PRC2 – ñóáúåäèíèöû Eed - ÝÑÊ ïðåòåðïåâàþò ñïîíòàííóþ ðàçíîíàïðàâëåííóþ äèôôåðåíöèðîâêó [35], ïðè ýòîì îòñóòñòâèå äðóãîãî êîìïîíåíòà – Ezn2 –
íèêàê íå âëèÿåò íà ñàìîîáíîâëåíèå è ñîõðàíåíèå ïëþðèïîòåíòíîñòè ïîïóëÿöèé ÝÑÊ [40]. Ýòî ãîâîðèò î Eed êàê îá
îäíîì èç êëþ÷åâûõ áåëêîâ â ðåãóëÿöèè ïîääåðæàíèÿ ïëþðèïîòåíòíîñòè ÝÑÊ. Òåì íå ìåíåå, ôàêòîðó PRC2 è áåëêó Eed
â ëèòåðàòóðå óäåëÿåòñÿ ìàëî âíèìàíèÿ.
Òàêèì îáðàçîì, ñëîæíî ãîâîðèòü î ðîëè âñåõ PcG-ïðîòåèíîâ â ïîääåðæàíèè ïëþðèïîòåíòíîñòè ÝÑÊ. Áîëüøîå
÷èñëî PcG-ïðîòåèíîâ àññîöèèðîâàíî ñ ãåíàìè Oct4, Sox2 è
Nanog, îäíàêî íå ñëóæèò äëÿ ïîäàâëåíèÿ èõ ýêñïðåññèè. Ïîâèäèìîìó, Oct4, Sox2 è Nanog ìîãóò ñëóæèòü ñèãíàëàìè äëÿ
àêòèâàöèè PcG-ïðîòåèíîâ è ïîñëåäóþùåé ñóïðåññèè òêàíåñïåöèôè÷íûõ ãåíîâ [34, 35], íî ñ óâåðåííîñòüþ äåëàòü
ïîäîáíûé âûâîä ïðåæäåâðåìåííî.
Ðîëü ìåòèëèðîâàíèÿ ãèñòîíîâ è ÄÍÊ
â ïîääåðæàíèè ñâîéñòâ ÝÑÊ
Ñâèäåòåëüñòâà âëèÿíèÿ óðîâíÿ ìåòèëèðîâàíèÿ ãèñòîíîâ
è ÄÍÊ íà ýêñïðåññèþ ãåíîìà ìîæíî îáíàðóæèòü â íåñêîëüêèõ ýêñïåðèìåíòàëüíûõ ðàáîòàõ, ãäå áûëè ïîêàçàíû äèíàìè÷åñêèå èçìåíåíèÿ ìåòèëèðîâàíèÿ ãèñòîíîâ [46] è ÄÍÊ
[47] in vivo íà ðàçâèâàþùèõñÿ ýìáðèîíàõ ìûøè. Ñðàçó ïîñëå îïëîäîòâîðåíèÿ â ÿéöåêëåòêå òàêèõ ìëåêîïèòàþùèõ, êàê
43
ìûøü è ÷åëîâåê, ïàäàåò óðîâåíü ìåòèëèðîâàíèÿ ÄÍÊ [48],
âîññòàíàâëèâàÿñü ê ñòàäèè áëàñòîöèñòû â êëåòêàõ ÂÊÌ [47]
è âíîâü ïîñòåïåííî ñíèæàÿñü ïî ìåðå ðàçâèòèÿ ýìáðèîíà
[49]. Ïðîôèëü ìåòèëèðîâàíèÿ ïðè ýòîì ñòðîãî âèäîñïåöèôè÷åí, è ó äðóãèõ âèäîâ ìëåêîïèòàþùèõ, òàêèõ êàê êîðîâà,
îâöà è ñâèíüÿ, âîññòàíîâëåíèÿ ìåòèëèðîâàíèÿ íà ñòàäèè
áëàñòîöèñòû íå ïðîèñõîäèò [50]. Ïî-âèäèìîìó, ìåòèëèðîâàíèå – áîëåå ïîçäíåå ýâîëþöèîííîå ïðèîáðåòåíèå, ÷åì
PcG-ôàêòîðû, è íå ÿâëÿåòñÿ óíèâåðñàëüíûì ìåõàíèçìîì
ðåïðåññèè òðàíñêðèïöèè è ïîäàâëåíèÿ äèôôåðåíöèðîâêè
êëåòîê [51]. Íàèáîëåå ðàñïðîñòðàíåííîé ðàçíîâèäíîñòüþ
ýïèãåíåòè÷åñêèõ èçìåíåíèé â êëåòêàõ ìëåêîïèòàþùèõ
ÿâëÿåòñÿ ñèììåòðè÷íîå ìåòèëèðîâàíèå öèòîçèíà â 5’ ïîçèöèè â CpG äèíóêëåîòèäàõ (â êîòîðûõ çà öèòîçèíîì ðàñïîëàãàåòñÿ ãóàíèí) [52].
Ëîêóñ-ñïåöèôè÷åñêîå ìåòèëèðîâàíèå ãèñòîíîâ è ÄÍÊ
â êëåòêàõ âíóòðåííåé êëåòî÷íîé ìàññû ñîõðàíÿåòñÿ â ïîëó÷àåìûõ èç íèõ êóëüòóðàõ ÝÑÊ [50].  ñëó÷àå ïðèñóòñòâèÿ â
êëåòêàõ ÂÊÌ ýïèãåíåòè÷åñêèõ íàðóøåíèé, ýòè íàðóøåíèÿ
ñîõðàíÿþòñÿ â ÝÑÊ è èõ ïðîèçâîäíûõ [53].
Ýïèãåíåòè÷åñêèå èçìåíåíèÿ â ÝÑÊ ÷åëîâåêà èìåþò
áîëüøîå çíà÷åíèå ñ òî÷êè çðåíèÿ ïðèìåíåíèÿ ýòèõ êëåòîê â
öåëÿõ ðåãåíåðàòèâíîé ìåäèöèíû. Óðîâåíü ìåòèëèðîâàíèÿ
ÄÍÊ ìîæåò îãðàíè÷èâàòü èëè, íàïðîòèâ, ñòèìóëèðîâàòü
äèôôåðåíöèðîâêó ÝÑÊ â îïðåäåëåííûå òèïû êëåòîê [5456]. Íàïðèìåð, äèôôåðåíöèðîâêà ÝÑÊ â êàðäèîìèîöèòû
ìîæåò áûòü óñêîðåíà ñ ïîìîùüþ ïðèìåíåíèÿ èíãèáèòîðîâ
ôåðìåíòà ÄÍÊ-ìåòèëòðàíñôåðàçû [57].
Îòíîñèòåëüíî ñïîñîáíîñòè ÝÑÊ ïðèâîäèòü ê ôîðìèðîâàíèþ òåðàòîì ïðè òðàíñïëàíòàöèè â îðãàíèçì æèâîòíûõ
ñ ýêñïåðèìåíòàëüíî èíäóöèðîâàííûì èììóíîäåôèöèòîì
òàêæå ñóùåñòâóåò òî÷êà çðåíèÿ, ÷òî îïóõîëè îáðàçóþòñÿ
èç êëåòîê ñ íàðóøåíèÿìè ìåòèëèðîâàíèÿ ãåíîìà [50],
ïîñêîëüêó ìíîãèå òèïû îíêîëîãè÷åñêèõ çàáîëåâàíèé ÷åëîâåêà ñâÿçàíû ñ ãèïåðìåòèëèðîâàíèåì èëè, íàîáîðîò,
ãèïîìåòèëèðîâàíèåì îïðåäåëåííûõ ó÷àñòêîâ ÄÍÊ [58].
Ñ ïîìîùüþ ìåòèëèðîâàíèÿ ìîãóò áûòü ïîäàâëåíû ãåíûñóïðåññîðû îïóõîëåâîãî ðîñòà èëè, íàïðîòèâ, àêòèâèðîâàíû
ïðîòîîíêîãåíû.
Ïîìèìî çíà÷èìîñòè äëÿ ìåäèöèíû, õàðàêòåðèñòèêà èçìåíåíèÿ ïðîôèëÿ ìåòèëèðîâàíèÿ â êëåòêàõ ÂÊÌ ïðè ðàçâèòèè áëàñòîöèñòû è ÝÑÊ â ïðîöåññå êóëüòèâèðîâàíèÿ in vitro
è äèôôåðåíöèðîâêè, à òàêæå ðàçëè÷èÿ ïðîôèëåé ìåòèëèðîâàíèÿ ìåæäó ðàçíûìè êëåòî÷íûìè ëèíèÿìè ÝÑÊ ÿâëÿåòñÿ
ôóíäàìåíòàëüíûì âîïðîñîì áèîëîãèè ðàçâèòèÿ.
Çàêëþ÷åíèå
Ïëþðèïîòåíòíîñòü ïîïóëÿöèé ÝÑÊ îïðåäåëÿåòñÿ àêòèâíîñòüþ ñïåöèôè÷åñêèõ òðàíñêðèïöèîííûõ ôàêòîðîâ, òàêèõ
êàê Oct4, Nanog, Sox2 è íåêîòîðûõ äðóãèõ. Ýòè ôàêòîðû
îáëàäàþò óíèêàëüíûìè ïàòòåðíàìè ýêñïðåññèè, è îò èõ áàëàíñà â êàæäûé ìîìåíò ýìáðèîíàëüíîãî ðàçâèòèÿ çàâèñèò êîììèòèðîâàíèå è äèôôåðåíöèðîâêà ýìáðèîíàëüíûõ
ñòâîëîâûõ êëåòîê.  òî æå âðåìÿ, ñàìîîáíîâëåíèå è ïëþðèïîòåíîñòü ÝÑÊ òåñíî ñâÿçàíû ñî ñïåöèôè÷åñêèìè ìîäèôèêàöèÿìè êîâàëåíòíûõ ñâÿçåé ãèñòîíîâ ñ ÄÍÊ, à òàêæå
ñòåïåíÿìè àññîöèàöèè òðàíñêðèïöèîííûõ ôàêòîðîâ ñ õðîìàòèíîì, òî åñòü ñ ýïèãåíåòè÷åñêèìè ôàêòîðàìè. Íà ïðîöåññû, ñâÿçàííûå ñ ïîääåðæàíèåì ñâîéñòâ ÝÑÊ, âëèÿåò
àêòèâíîñòü íåêîòîðûõ ôåðìåíòîâ, íàïðèìåð õðîìàòèíðåìîäóëèðóþùèõ ôàêòîðîâ èç PcG-ãðóïïû, à òàêæå óðîâåíü
ìåòèëèðîâàíèÿ ãèñòîíîâ è ÄÍÊ. Òàêèì îáðàçîì, íåâîçìîæíî
âûäåëèòü îäèí èëè íåñêîëüêî êëþ÷åâûõ ôàêòîðîâ, îò êîòîðûõ çàâèñÿò õàðàêòåðèñòèêè ÝÑÊ. Òåì íå ìåíåå, çíàÿ âñþ
ñëîæíóþ ñõåìó âçàèìîäåéñòâèé ýòèõ ôàêòîðîâ, ìîæíî ïðåäïîëàãàòü, êàê îòðàçèòñÿ èçìåíåíèå ýêñïðåññèè îäíîãî èëè
íåñêîëüêèõ èç íèõ íà ñâîéñòâàõ ÝÑÊ.
Êëåòî÷íàÿ òðàíñïëàíòîëîãèÿ è òêàíåâàÿ èíæåíåðèÿ Òîì III, ¹ 2, 2008
44
Îáçîðû
ËÈÒÅÐÀÒÓÐÀ
1. Keller G. Embryonic stem cell differentiation: emergence of a new era in
biology and medicine. Genes Dev. 2005; 19: 1129-55.
2. Blum B., Benvenisty N. Clonal Analysis of Human Embryonic Stem Cell
Differentiation into Teratomas. Stem Cells 2007; 25: 1924-30.
3. de la Serna I.L., Ohkawa Y., Imbalzano A.N. Chromatin remodelling in
mammalian differentiation: lessons from ATP-dependent remodellers. Nat. Rev.
Genet. 2006; 7: 461-73.
4. Lin W., Dent S.Y. Functions of histone-modifying enzymes in development.
Curr. Opin. Genet. Dev. 2006; 16: 137-42.
5. Smith A.G. Embryo-derived stem cells: of mice and men. Ann. Rev. Cell.
Dev. Biol. 2001; 17: 435-62.
6. Chambers I., Yates A. The homeodomain protein Nanog and pluripotency
in mouse embryonic stem cells. Biochemical society transactions 2005; 33:
1518-21.
7. Loh Y.H., Wu Q., Chew J.-L. et al. The Oct4 and Nanog transcription
network regulates pluripotency in mouse embryonic stem cells. Nature Genetics
2005; 38: 431-40.
8. Pan G., Lin J., Zhou Y. et al. A negative feedback loop of transcription
factors that controls stem cell pluripotency and self-renewal. The FASEB J. 2006;
20: 1094-02.
9. Nichols J., Zevnik B., Anastassiadis K. et al. Formation of pluripotent stem
cells in the mammalian embryo depends on the POU transcription factor Oct4.
Cell 1998; 95: 379-91.
10. Niwa H., Miyazaki J., Smith A.G. Quantitative expression of Oct-3/4
defines differentiation, dedifferentiation or selfrenewal of ES cells. Nat. Genet.
2000; 24: 372-6.
11. Rodriguez R.T., Velkey J.M., Lutzko C. et al. Manipulation of OCT4 levels
in human embryonic stem cells results in induction of differential cell types.
Experimental Bio. Med. 2007; 232: 1368-80.
12. Avery S., Inniss K., Moore H. The regulation of self-renewal in human
embryonic stem cells. Stem Cells and Dev. 2006; 15: 729-40.
13. Boiani M., Scholer H.R. Regulatory networks in embryo-derived
pluripotent stem cells. Nat. Rev. Mol. Cell. Biol. 2005; 6: 872-84.
14. Chambers I., Colby D., Robertson M. et al. Functional Expression Cloning
of Nanog, a Pluripotency Sustaining Factor in Embryonic Stem Cells. Cell 2003;
113: 643-55.
15. Mitsui K., Tokuzawa Y., Itoh H. et al. The homeoprotein Nanog is required
for maintenance of pluripotency in mouse epiblast and ES cells. Cell 2003; 113:
631-42.
16. Chambers I., Silva J., Colby D. et al. Nanog safeguards pluripotency and
mediates germline development. Nature 2007; 450: 1230-5.
17. Hough S.R., Clements I., Welch P.J., Wiederholt K.A. Differentiation of
mouse embryonic stem cells after RNA interference-mediated silencing of OCT4
and Nanog. Stem Cells 2006; 24: 1467-5.
18. Kehler J., Tolkunova E., Koschorz B. et al. Oct4 is required for primordial
germ cell survival. EMBO reports 2004; 5: 1078-83.
19. Niwa H., Toyooka Y., Shimosato D. et al. Interaction between Oct3/4
and Cdx2 determines trophectoderm differentiation. Cell 2005; 123: 917-29.
20. Strumpf D., Mao C.A., Yamanaka Y. et al. Cdx2 is required for correct
cell fate specification and differentiation of trophectoderm in the mouse blastocyst.
Dev. 2005; 132: 2093-102.
21. Hyslop L., Stojkovic M., Armstrong L. et al. Downregulation of NANOG
induces differentiation of human embryonic stem cells to extraembryonic lineages.
Stem Cells 2005; 23: 1035-43.
22. Fujikura J., Yamato E., Yonemura S. et al. Differentiation of embryonic
stem cells is induced by GATA factors. Genes Dev. 2002; 16: 784-9.
23. Capo-Chichi C.D., Rula M.E., Smedberg J.L. et al. Perception of
differentiation cues by GATA factors in primitive endoderm lineage determination
of mouse embryonic stem cells. Dev. Biol. 2005; 286: 574-86.
24. Singh A.M., Hamazaki T., Hankowski K.E., Terada N. A heterogeneous
expression pattern for Nanog in embryonic stem cells. Stem Cells 2007; 25:
2534-42.
25. Boyer L.A., Lee T.I., Cole M.F. et al. Core transcriptional regulatory circuitry
in human embryonic stem cells. Cell 2005; 122: 947-56.
26. Boyer L.A., Mathur D., Jaenisch R. Molecular control of pluripotency.
Current Opinion in Genetics & Dev. 2006; 16: 455-62.
27. Humphrey R.K., Beattie G.M., Lopez A.D. et al. Maintenance of
Pluripotency in Human Embryonic Stem Cells is Stat3 independent. Stem Cells
2004; 22: 522-30.
28. Niwa H. How is pluripotency determined and maintained? Dev. 2007;
134: 635-46.
29. Meshorer E., Yellajoshula D., George E. et al. Hyperdynamic plasticity of
chromatin proteins in pluripotent embryonic stem cells. Dev. Cell 2006; 10: 105-16.
30. Levings P.P., Zhou Z., Vieira K.F. et al. Recruitment of transcription
complexes to the b-globin locus control region and transcription of hypersensitive
site 3 prior to erythroid differentiation of murine embryonic stem cells. FEBS J.
2006; 273: 746-55.
31. Szutorisz H., Canzonetta C., Georgiou A. et al. Formation of an active
tissue-specific chromatin domain initiated by epigenetic marking at the embryonic
stem cell stage. Mol. Cell. Biol. 2005; 25: 1804-20.
32. Azuara V., Perry P., Sauer S. et al. Chromatin signatures of pluripotent
cell lines. Nat. Cell Biol. 2006; 8: 532-8.
33. Bernstein B.E., Mikkelsen T.S., Xie X. et al. A bivalent chromatin structure
marks key developmental genes in embryonic stem cells. Cell 2006; 125: 315-26.
34. Boyer L.A., Plath K., Zeitlinger J. et al. Polycomb complexes repress
developmental regulators in murine embryonic stem cells. Nature 2006; 441:
349-53.
35. Lee T.I., Jenner R.G., Boyer L.A. et al. Control of developmental regulators
by Polycomb in human embryonic stem cells. Cell 2006; 125: 301-13.
36. Spivakov M., Fisher A.G. Epigenetic signatures of stem-cell identity. Nat.
Rev. Genet. 2007; 8(4): 263-71.
37. Levine S.S., Weiss A., Erdjument-Bromage H. et al. The core of the
Polycomb repressive complex is compositionally and functionally conserved in flies
and humans. Mol. Cell Biol. 2002; 22: 6070-8.
38. Voncken J.W., Roelen B.A., Roefs M. et al. Rnf2 (Ring1b) deficiency
causes gastrulation arrest and cell cycle inhibition. Proc. Natl. Acad. Sci. USA
2003; 100: 2468-73.
39. Pasini D., Bracken A.P., Jensen M.R. et al. Suz12 is essential for mouse
development and for EZH2 histone methyltransferase activity. EMBO J. 2004;
23: 4061-71.
40. O'Carroll D., Erhardt S., Pagani M. et al. The Polycomb-group gene Ezh2
is required for early mouse development. Mol. Cell Biol. 2001; 21: 4330-6.
41. Shumacher A., Faust C., Magnuson T. Positional cloning of a global
regulator of anterior-posterior patterning in mice. Nature 1996; 383: 250-3.
42. Molofsky A.V., Pardal R., Iwashita T. et al. Bmi-1 dependence
distinguishes neural stem cell self-renewal from progenitor proliferation. Nature
2003; 425: 962-7.
43. Park I.K., Qian D., Kiel M. et al. Bmi-1 is required for maintenance of
adult self-renewing haematopoietic stem cells. Nature 2003; 423: 302-5.
44. Tolhuis B., Muijrers I., de Wit E. et al. Genome-wide profiling of PRC1 and
PRC2 Polycomb chromatin binding in Drosophila melanogaster. Nat. Genet. 2006;
38:694-9.
45. Schwartz Y.B., Kahn T.G., Nix D.A. et al. Genome-wide analysis of
Polycomb targets in Drosophila melanogaster. Nat. Genet. 2006; 38: 700-5.
46. Arney K.L., Bao S., Bannister A.J. et al. Histone methylation defines
epigenetic asymmetry in the mouse zygote. Int. J. Dev. Biol. 2002; 46: 317-20.
47. Santos F., Hendrich B., Reik W., Dean W. Dynamic reprogramming of
DNA methylation in the early mouse embryo. Dev. Biol. 2002; 241: 172-82.
48. Beaujean N., Hartshorne G., Cavilla J. Non-conservation of mammalian
preimplantation methylation dynamics. Curr. Biol. 2004; 14: R266-67.
49. Santos F., Hendrich B., Reik W., Dean W. Dynamic reprogramming of
DNA methylation in the early mouse embryo. Dev. Biol. 2002; 41: 172-82.
50. Allegrucci C., Denning C., Priddle H., Young L. Stem-cell consequences
of embryo epigenetic defects. Lancet 2004; 364: 206-8.
51. Santos F., Dean W. Epigenetic reprogramming during early development
in mammals. Reproduction 2004; 127: 643-51.
52. Bestor T.H. The DNA methyltransferases of mammals. Hum. Molec.
Genet. 2000; 9: 2395-502.
53. Dean W., Bowden L., Aitchison A. Altered imprinted gene methylation and
expression in completely ES cell-derived mouse fetuses. Dev. 1998; 125: 2273-82.
54. Ansel K.M., Lee D.U., Rao A. An epigenetic view of helper T cell
differentiation. Nature Immunol. 2003; 4: 616-23.
55. Frostesjo L., Holm I., Grahn B. et al. Interference with DNA methyltransferase
activity and genome methylation during F9 teratocarcinoma stem cell differentiation
induced by polyamine depletion. J. Biol. Chem. 1997; 272: 4359-66.
56. Maatouk D.M., Resnick J.L. Continuing primordial germ cell differentiation
in the mouse embryo is a cell-intrinsic program sensitive to DNA methylation.
Dev. Biol. 2003; 258: 201-8.
57. Xu C., Police S., Rao N., Carpenter M.K. Characterization and enrichment
of cardiomyocytes derived from human embryonic stem cells. Circ. Res. 2002;
91: 501-8.
58. Szyf M. DNA methylation and cancer therapy. Drug Resist. Update 2003;
6: 341-53.
Ïîñòóïèëà 11.03.2008
Êëåòî÷íàÿ òðàíñïëàíòîëîãèÿ è òêàíåâàÿ èíæåíåðèÿ Òîì III, ¹ 2, 2008
Download